• Title/Summary/Keyword: biomass potential

Search Result 480, Processing Time 0.021 seconds

Physiological Ecology of parasitic Dinoflagellate Amoebophrya and Harmful Algal Blooms (기생성 와편모류 Amoebophrya의 생리 생태적 특성과 적조)

  • 박명길
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.181-194
    • /
    • 2002
  • Parasitism is a one-sided relationship between two organisms in which one benefits at the expense of the other. Parasitic dinoflagellates, particularly species of Amoebophrya, have long been thought to be a potential biological agent for controlling harmful algal bloom(HAB). Amoebophrya infections have been reported for over 40 species representing more than 24 dinoflagellate genera including a few toxic species. Parasitic dinoflagellates Amoebophrya spp. have a relatively simple life cycle consisting of an infective dispersal stage (dinospore), an intracellular growth stage(trophont), and an extracellular reproductive stage(vermiform). Biology of dinospores such as infectivity, survival, and ability to successfully infect host cells differs among dinoflagellate host-parasite systems. There are growing reports that Amoebophrya spp.(previously, collectively known as Amoebophrya ceratii) exhibit the strong host specificity and would be a species complex composed of several host-specific taxa, based on the marked differences in host-parasite biology, cross infection, and molecular genetic data. Dinoflagellates become reproductively incompetent and are eventually killed by the parasite once infected. During the infection cycle of the parasite, the infected host exhibits ecophysiologically different patterns from those of uninfected host in various ways. Photosynthetic performance in autotrophic dinoflagellates can be significantly altered following infection by parasitic dinoflagellate Amoebophrya, with the magnitude of the effects over the infection cycle of the parasite depending on the site of infection. Parasitism by the parasitic dinoflagellate Amoebophrya could have significant impacts on host behavior such as diel vertical migration. Parasitic dinoflagellates may not only stimulate rapid cycling of dissolved organic materials and/or trace metals but also would repackage the relatively large sized host biomass into a number of smaller dinospores, thereby leading to better retention of host's material and energy within the microbial loop. To better understand the roles of parasites in plankton ecology and harmful algal dynamics, further research on a variety of dinoflagellate host-parasite systems is needed.

Reservoir Trophic State and Empirical Model Analysis, Based on Nutrients, Transparency, and Chlorophyll-${\alpha}$ Along with Their Relations Among the Parameters (영양염류, 투명도 및 엽록소를 이용한 인공호 영양상태, 경험적 모델 분석 및 변수들 간의 상호관계)

  • An, Kwang-Guk;Kim, Jae-Kyeng;Lee, Sang-Jae
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.252-263
    • /
    • 2008
  • The purpose of this study was to determine trophic state, based on nutrients (TN, TP), transparency (SD), and chlorophyll-${\alpha}$ (Chl) and identify their empirical relations of TN-Chl, TP-Chl and Chl-SD depending on the dataset used along with dynamics of conductivity and suspended solids. Analysis of trophic states showed that more than half of 36 reservoirs were judged as eutrophic-hypertrophic conditions depending on the trophic variables. Seasonal values of TP varied by nearly 500% and showed greater in August than any other months. In contrast, TN varied within less than 90% and all monthly mean values of TN were never fall less than 1.2 mg L$^{-1}$ indicating low seasonal variations and high ambient concentrations (eutrophic-hypertrophic state). Analysis of empirical relations in the trophic variables showed that transparency had greater functional relations with Chl (R$^2$=0.31, p<0.001) than TP (R$^2$=0.15, p<0.001) and TN (R$^2$=0.20, p<0.001). Ratios of TN : TP in the ambient water indicated that most reservoirs showed a potential phosphorous limitation on the algal growth. Thus, algal biomass, based on Chl values, was more regulated by phosphorous than nitrogen. Analysis of linear regression model, based on log-transformed annual mean values, showed that only 30% in the variation of Chl was explained by TP (R$^2$=0.295, p=0.001, n=36) and 15% by TN (R$^2$=0.151, p=0.019, n=36). However, linear regression model, based on individual system, showed that Chl-TP model had strong positive relations (R$^2$=0.62, p=0.002, n=12), whereas the model had no any relations (p=0.892, n=12). Overall, our data suggested that averaging effect in the empirical model developments may influence the significance in the statistical analysis.

Investigations of the Potential Fisheries Resources in the Southern Waters of Korea - Biological Composition of Demersal Trawl Catches - (한국 남해안의 잠재어업자원 조사연구 - 저층크롤 어획량의 생물학적 조성 -)

  • Lee, Dae-Jae;Kim, Jin-Kun;Shin, Hyong-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.3
    • /
    • pp.241-258
    • /
    • 1998
  • The experimental demersal trawl surveys to provide the essential information for the assessment, management and utilization of commercially important fish stocks in the southern waters of Korea were carried out during five research cruises between October 1996 and October 1997 by the training ship “KAYA” of Pukyong National University. The biological sampling was conducted by using the trawl net with a cover net of 36 mm in mesh size at 64 planned trawl stations during daylight to identify the biological characteristics of fish. Each catch was standardized into catch per unit of time and the catches at each trawl station were sorted, weighed and counted by species. The changes in catches of each fish species and the shifts in dominant species by seasions and sampling regions in the research area were analyzed, and the abundance of fish was estimated from the relationship between the trawl catches and the volume of the water column sampled by demersal trawls. The results obtained can be summarized as follows : 1. During the 64 demersal trawls conducted in the southern waters of Korea, 129 species including 112 species of fishes, 8 species of Cephalopoda and 7 species of Crustacea, were identified Also, during the 1996 and 1997 trawl surveys in the reseach area, a large number of commercially important species with small differences in proportion was found. me proportion of Japanese horse mackerel which comprised 19.8% of the total catch by weight was highest, followed by chub mackerel(15.0%), swordtip squid(9.0%), redwing searobin(6.2%), konoshiro gizzard shad(6.1%), Japanese flying squid(5.8%), silver pomfet(5.1%), blackmouth goosefish(5.1%), etc. Swordtip squid, Japanese flying squid, blackmouth goosefish and blackthroat seaperch were among the dominant species in all seasons with a relatively high and stab1e proportion(3.6~9.0%), and were widely distributed in the entire southern water of Korea. 2. The catch rates by cover net varied at 0.7~91.9% by weight of the total trawl catch by codend and cover net at 64 planned trawl stations and the mean catch rate was 44.4%. Species comprising a major portion of the catches by cover net mainly were swordtip squid, konoshiro gizzard shad, the juveniles of Japanese horse mackerel, blackthroat seaperch and chub mackerel, etc. 3. The distribution density of fish in terms of biomass per unit volume which derived from the catch data by 63 bottom trawl hauls in the southern waters of Korea ranged from 17.9 $\times$ 10-6 to 1,440.9 $\times$ 10-6kg/m3 with the mean value of 153.8 $\times$ 10-6 kg/m3. These fish densities varied between seasons, location of sampling stations and sea conditions. From these results, it is worth noting that the catch composition of multispecies and the increased occurrence of small fish in the southern waters of Korea may also result in new problems in determining the total allowable catch(TAC) levels for economically important species.

  • PDF

Grazing Rate and Pseudofaeces Production of Native Snail Cipangopaludina chinensis malleata Reeve on Toxic Cyanobacterium Microcystis aeruginosa (한국산 논우렁이의 유해조류 섭식율 및 배설물 생산)

  • Hwang, Soon-Jin;Jeon, Mi-Jin;Kim, Nan-Young;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.77-85
    • /
    • 2008
  • Grazing rates (GR) and pseudofaeces production (PFP) of native snail, Chinese mystery snail (Cipangopaludina chinensis malleata Reeve) on natural colonial morphs of Microcystis aeruginosa was measured. C. chinensis was collected from the upstream of the Geum River (Boryeong, Korea), where they co-habituated with Unio douglasiae and Lanceolaria acrorhyncha. The experiments were performed to evaluate the GR and PFP at different conditions such as; incubation time (1, 3, 5, 7, 9 and 11 hr), body size (3 to 6.1 cm, n=28), snail density (0.5, 1, 1.5 and 2.0 ind. $L^{-1}$) and prey concentration (168.3, 336.7, 505.0 and $673.0{\mu}g\;Chl-{\alpha}L^{-1}$). All experiments were triplicated, and conducted in transparent acrylic vessel (3L in volume). Regarding feeding time, a highest GR (0.538L $gAFDW^{-1}h^{-1}$) and PFP $(7.18mgAFDW^{-1})$ appeared at 1hr and 7hr after snail stocking, respectively. Interestingly, the snail, smaller than 4.5cm in body size, showed a wide range of GR ($-4.173{\sim}1.087L\;gAFDW^{-1}h^{-1}$) for the initial period (1 and 4hrs of stocking), compared to those greater than 4.5cm, which showed a stable FR, higher than 0.5L $gAFDW^{-1}h^{-1}$. Upon density effect, the density of 1.5 ind. $L^{-1}$ induced the most effective inhibition on Microcystis biomass with highest PFP. On the prey concentration, highest GR (0.897L $gAFDW^{-1}h^{-1}$) and PFP (3.67 mg $gAFDW^{-1}h^{-1}$) were induced at the level of $168.3{\mu}g\;Chl-{\alpha}L^{-1}$ and $673{\mu}g\;Chl-{\alpha}L^{-1}$, respectively. GR and PFP of this freshwater snail on the cyanobacterial bloom (M. aeruginosa) varied with the feeding conditions, and they were comparatively high for a short period of time less than 7hrs regardless of the stocking condition. Our results suggest that this freshwater snail has a potential to control cyanobacterial bloom when provided with suitable condition.

Effects of Thermal Wastewater Effluent and Hydrogen Ion Potential (pH) on Water Quality and Periphyton Biomass in a Small Stream (Buso) of Pocheon Area, Korea (포천지역 계류 (부소천)의 수질과 부착조류 생물량에 온배수와 수소이온농도 (pH) 영향)

  • Jeon, Gyeonghye;Eum, Hyun Soo;Jung, Jinho;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.96-115
    • /
    • 2017
  • Understanding effects of thermal pollution and acidification has long been a concern of aquatic ecologists, but it remains largely unknown in Korea. This study was performed to elucidate the effects of thermal wastewater effluent (TWE) and acid rain on water quality and attached algae in a small mountain stream, the Buso Stream, a tributary located in the Hantan River basin. A total of five study sites were selected in the upstream area including the inflowing point of hot-spring wastewater (HSW), one upstream site (BSU), and three sites below thermal effluent merged into the stream (1 m, 10 m and 300 m for BSD1, BSD2, and BSD3, respectively). Field surveys and laboratory analyses were carried out every month from December 2015 to September 2016. Water temperature ranged $1.7{\sim}28.8^{\circ}C$ with a mean of $15.0^{\circ}C$ among all sites. Due to the effect of thermal effluent, water temperature at HSW site was sustained at high level during the study period from $17.5^{\circ}C$ (January) to $28.8^{\circ}C$ (September) with a mean of $24.2{\pm}3.7^{\circ}C$, which was significantly higher than other sites. Thermal wastewater effluent also brought in high concentration of nutrients(N, P). The effect of TWE was particularly apparent during dry season and low temperature period (December~March). Temperature effect of TWE did not last toward downstream, while nutrient effect seemed to maintain in longer distance. pH ranged 5.1~8.4 with a mean of 6.9 among all sites during the study period. The pH decrease was attributed to seasonal acid rain and snow fall, and their effects was identified by acidophilic diatoms dominated mainly by Eunotia pectinalis and Tabellaria flocculosa during March and August. These findings indicated that water quality and periphyton assemblages in the upstream region of Buso Stream were affected by thermal pollution, eutrophication, and acidification, and their confounding effects were seasonally variable.

Adsorption Characteristics of Heavy Metal Ions onto Chemically Modified Rice Husk and Sawdust from Aqueous Solutions (화학적으로 개질된 왕겨 및 톱밥(미송, 참나무, 포플러)의 중금속 흡착특성)

  • Lee, Hyeon-Yong;Jeon, Choong;Lim, Kyoung-Jae;Hong, Ki-Chan;Lim, Jung-Eun;Choi, Bong-Su;Kim, Nam-Won;Yang, Jae-E;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.158-164
    • /
    • 2009
  • Biosorption uses adsorbents derived from non-living biomass and removes toxic metals from industrial wastewater. The objective of this research was to evaluate the potential of low cost biosorbents to remove heavy metal ions (Cd, Cu, Pb and Zn) from aqueous solutions using chemically modified rice husk and saw dust (Pseudotsuga menziesi, Quercus, Populus). Batch-type adsorption experiments were carried out using rice husk and saw dust treated with NaOH and/or tartaric acid in artificial wastewater 100 mg metal/L). The experimental results showed that the adsorption specificity of each biosorbent was Pb > Cu > Cd > Zn irrespective of the types of biosorbents. The adsorption capacity of Pb and Cu onto NaOH-treated sawdust was increased 2${\sim}$3 times compared to the untreated one. In addition, the tartaric acid treatment increased the adsorption capacity of rice husk for Zn and Cd approximately 5${\sim}$10 fold compared to the untreated one. Surface conditions and changes in functional groups by chemical modification of each biosorbent were confirmed by SEM and FT-IR. Overall, the results show that chemical modification increases the metal removal capacity of rice bran and sawdust.

Evaluation of free radical scavenging and pancreatic lipase inhibitory effects of Aquilaria agallocha extracts (침향 추출물의 라디칼 및 췌장 지방분해 효소저해 활성 평가)

  • Lee, Ha Yeong;Lee, In-Chul;Kwak, Jae Hoon;Kim, Tae Hoon
    • Food Science and Preservation
    • /
    • v.22 no.3
    • /
    • pp.437-442
    • /
    • 2015
  • In a continuing screening of selected medicinal plants native to South Korea, the antioxidant and pancreatic lipase inhibitory activities of an aqueous methanolic extract from the heartwood of Aquilaria agallocha were investigated. Eighty percent of the methanolic extract of A. agallocha was further divided into $CH_2Cl_2$, EtOAc and n-BuOH in order to yield four solvent-soluble portions, namely $CH_2Cl_2$-soluble, EtOAc-soluble, n-BuOH-soluble and $H_2O$ residue. The antioxidant properties were evaluated by employing radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) ($ABTS^+$) radicals, while the anti-obesity efficacy of A. agallocha extracts and solvent-soluble portions were tested by porcine pancreatic lipase assay. All tested samples showed dose-dependent radical scavenging and pancreatic lipase inhibitory activities. Among the tested extracts and solvent-soluble portions, the $CH_2Cl_2$-soluble portion showed much higher radical scavenging activity and pancreatic lipase inhibitory properties when compared with other solvent-soluble portions. This result suggested that there was a significant relationship between the total phenolic content and biological efficacies, and A. agallocha extract might be considered as a new potential source of natural antioxidants and as a pancreatic lipase inhibitory source. A more systematic investigation of this biomass will be performed for further investigation of activity against antioxidative and anti-obesity effects.

A New Early-Heading and High-Yielding Forage Rye Variety, "Olgreen" (극조숙 청예다수성 호밀 신품종 "올그린")

  • Heo, Hwa-Young;Park, Hyoung-Ho;Hwang, Jong-Jin;Kim, Hong-Sik;Han, Ouk-Kyu;Park, Tae-Il;Seo, Jae-Hwan;Kim, Dea-wook;Kim, Su-Yong;Kim, Si-Ju;Park, Ki-Hun
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.625-629
    • /
    • 2009
  • "Olgreen" (Scale cereal L.), a new rye variety was developed by National Institute of Crop Science(NICS), RDA. It was released in 2008 because of its high biomass yield potential and early maturity. It was developed from an open pollination within 10 rye varieties or lines including "Chochun" in 1995. The line 'SR95POP-S1-1072-1-2-4' was selected for its early maturity and excellent agronomic appearance, and placed in yield trials for two years from 2004 to 2005. It was designated "Homil 38" and placed in regional yield trials at the four locations around Korea from 2006 to 2008, from which the name "Olgreen" was given. Over three years, "Olgreen" averaged 8.88 ton ha-1 of forage yield (based on dry matter) harvested at late April and superior to other varieties with an increase of 10% more than the check variety "Olhomil", and 9% more than the introduced rye "Koolgrazer". Heading date of "Olgreen" was April 20 which was 3 days earlier than that of "Olhomil". It would be recommended as an early rye variety for forage or green manure in South Korea.

Antibacterial and Antibiofilm Activities of Leaf Extracts of Stewartia koreana against Porphyromonas gingivalis (Porphyromonas gingivalis에 대한 노각나무 잎 추출물의 항균활성 및 생물막 형성 억제 효과)

  • Kim, Hye Soo;Park, Min Jeong;Kim, Soo Jeong;Kim, Bu Kyung;Park, JunHo;Kim, DaeHyun;Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.330-337
    • /
    • 2021
  • This study was conducted to investigate the potential of Stewartia koreana as oral healthcare materials. The antibacterial activity of ethanol extracts from leaves and branches of S. koreana against oral bacteria was confirmed. The leaf and branch extracts (1 mg/disc) showed antibacterial activity against P. gingivalis only among several tested oral bacteria. The leaf extracts showed higher antibacterial activity, with values similar to those of chlorhexidine, which was used as a positive control. The MIC of the leaf extract against P. gingivalis was 0.4 mg/ml and showed bacteriostatic action. The inhibitory effects of the extract on biofilm formation and on gene expression related to biofilm formation by P. gingivalis were determined by biofilm biomass staining, scanning electron microscopy (SEM), and qRT-PCR analysis. The biofilm production rate and cell growth of P. gingivalis in the cultures treated with 0.2-2.0 mg/ml of S. koreana leaf extracts were significantly decreased in a concentration-dependent manner. The inhibitory effect on the formation of P. gingivalis biofilms at concentrations of 1 mg/ml was confirmed by SEM. The qRT-PCR analysis showed concentration-dependent suppression of the fimA and fimB gene expression associated with fimbriae formation in the cultures treated with 0.2-2.0 mg/ml S. koreana leaf extract. These results support the conclusion that S. koreana leaf extracts can be used as oral healthcare materials derived from natural materials, as demonstrated by the antibacterial action and inhibition of biofilm formation of P. gingivalis.

Evaluation of K-Cabbage Model for Yield Prediction of Chinese Cabbage in Highland Areas (고랭지 배추 생산 예측을 위한 K-배추 모델 평가)

  • Seong Eun Lee;Hyun Hee Han;Kyung Hwan Moon;Dae Hyun Kim;Byung-Hyuk Kim;Sang Gyu Lee;Hee Ju Lee;Suhyun Ryu;Hyerim Lee;Joon Yong Shim;Yong Soon Shin;Mun Il Ahn;Hee Ae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.398-403
    • /
    • 2023
  • Process-based K-cabbage model is based on physiological processes such as photosynthesis and phenology, making it possible to predict crop growth under different climate conditions that have never been experienced before. Current first-stage process-based models can be used to assess climate impact through yield prediction based on climate change scenarios, but no comparison has been performed between big data obtained from the main production area and model prediction so far. The aim of this study was to find out the direction of model improvement when using the current model for yield prediction. For this purpose, model performance evaluation was conducted based on data collected from farmers growing 'Chungwang' cabbage in Taebaek and Samcheok, the main producing areas of Chinese cabbage in highland region. The farms surveyed in this study had different cultivation methods in terms of planting date and soil water and nutrient management. The results showed that the potential biomass estimated using the K-cabbage model exceeded the observed values in all cases. Although predictions and observations at the time of harvest did not show a complete positive correlation due to limitations caused by the use of fresh weight in the model evaluation process (R2=0.74, RMSE=866.4), when fitting the model based on the values 2 weeks before harvest, the growth suitability index was different for each farm. These results are suggested to be due to differences in soil properties and management practices between farms. Therefore, to predict attainable yields taking into account differences in soil and management practices between farms, it is necessary to integrate dynamic soil nutrient and moisture modules into crop models, rather than using arbitrary growth suitability indices in current K-cabbage model.