• Title/Summary/Keyword: biomass japan

Search Result 64, Processing Time 0.018 seconds

Nitrogen Budget Analysis Using a Box Model for Hajeon Tidal Flat in the West Coast of Korea (Box model을 이용한 서해 곰소만 하전 갯벌의 질소 수지)

  • Yoo, Jae-Won;Hong, Jae-Sang;Yang, Sung-Ryull;Park, Kyeong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.4
    • /
    • pp.257-266
    • /
    • 2002
  • To estimate the nitrogen budget and assess the purification function of a tidal flat ecosystem, a field survey was carried out at Hajeon tidal flat in Gomso Bay, the southern part of Byeonsan Peninsula, Chollabuk-do, Korea. A study area of 3.0$\times$4.5 ㎢ was established on the tidal flat and the concentrations of chlorophyll-a, DIN, DON, and TN were measured in the water column during the period of April 17-18, 1999: From the budget analysis, the loss rate of Chl-a was estimated to be -0.05 mg Chl/㎡/hr, which is approximately 7% of that at Issiki tidal flat in Aichi Prefecture, Japan. The lower loss rate of Chl-a in the study area was attributable to the lower standing crop of phytoplankton, the lower temperature that may reduce metabolic rates of biotic components and the lower biomass of macrobenthos in the study area. Over the 13.5 ㎢ of study area, Hajeon tidal flat removed 8.36$\times$10$\^$2/ kg N/day of TN, 5.36$\times$10$\^$3/ kg N/day of PON and 1.62$\times$10$\^$2/ kg N/day of phytoplankton-related PON, showing that the tidal flats may play an important role in removing nitrogen in coastal waters. The removal rate of PON, compared to the removal cost of the existing waste water treatment facilities, indicates that the economic value of the purification function of Hajeon tidal flat (13.5㎢) may be more than that of two large facilities.

Soil Carbon Storage in Upland Soils by Biochar Application in East Asia: Review and Data Analysis (바이오차를 이용한 밭 토양 탄소 저장: 동아시아 지역 연구 리뷰 및 데이터 분석)

  • Lee, Sun-Il;Kang, Seong-Soo;Choi, Eun-Jung;Gwon, Hyo-Suk;Lee, Hyoung-Seok;Lee, Jong-Mun;Lim, Sang-Sun;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.219-230
    • /
    • 2021
  • BACKGROUND: Biochar is a solid material converted from agricultural biomass such as crop residues and pruning branch through pyrolysis under limited oxygen supply. Biochar consists of non-degradable carbon (C) double bonds and aromatic ring that are not readily broken down by microbial degradation in the soils. Due to the recalcitrancy of C in biochar, biochar application to the soils is of help in enhancing soil carbon sequestration in arable lands that might be a strategy of agricultural sector to mitigate climate change. METHODS AND RESULTS: Data were collected from studies on the effect of biochar application on soil C content conducted in East Asian countries including China, Japan and Korea under different experimental conditions (incubation, column, pot, and field). The magnitude of soil C storage was positively correlated (p < 0.001) with biochar application rate under field conditions, reflecting accumulation of recalcitrant black C in the biochar. However, The changes in soil C contents per C input from biochar (% per t/ha) were 6.80 in field condition, and 12.58 in laboratory condition. The magnitude of increment of soil C was lower in field than in laboratory conditions due to potential loss of C through weathering of biochar under field conditions. Biochar production condition also affected soil C increment; more C increment was found with biochar produced at a high temperature (over 450℃). CONCLUSION: This review suggests that biochar application is a potential measures of C sequestration in agricultural soils. However, as the increment of soil C biochar was affected by biochar types, further studies are necessary to find better biochar types for enhanced soil C storage.

Actions to Expand the Use of Geospatial Data and Satellite Imagery for Improved Estimation of Carbon Sinks in the LULUCF Sector

  • Ji-Ae Jung;Yoonrang Cho;Sunmin Lee;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.203-217
    • /
    • 2024
  • The Land Use, Land-Use Change and Forestry (LULUCF) sector of the National Greenhouse Gas Inventory is crucial for obtaining data on carbon sinks, necessitating accurate estimations. This study analyzes cases of countries applying the LULUCF sector at the Tier 3 level to propose enhanced methodologies for carbon sink estimation. In nations like Japan and Western Europe, satellite spatial information such as SPOT, Landsat, and Light Detection and Ranging (LiDAR)is used alongside national statistical data to estimate LULUCF. However, in Korea, the lack of land use change data and the absence of integrated management by category, measurement is predominantly conducted at the Tier 1 level, except for certain forest areas. In this study, Space-borne LiDAR Global Ecosystem Dynamics Investigation (GEDI) was used to calculate forest canopy heights based on Relative Height 100 (RH100) in the cities of Icheon, Gwangju, and Yeoju in Gyeonggi Province, Korea. These canopy heights were compared with the 1:5,000 scale forest maps used for the National Inventory Report in Korea. The GEDI data showed a maximum canopy height of 29.44 meters (m) in Gwangju, contrasting with the forest type maps that reported heights up to 34 m in Gwangju and parts of Icheon, and a minimum of 2 m in Icheon. Additionally, this study utilized Ordinary Least Squares(OLS)regression analysis to compare GEDI RH100 data with forest stand heights at the eup-myeon-dong level using ArcGIS, revealing Standard Deviations (SDs)ranging from -1.4 to 2.5, indicating significant regional variability. Areas where forest stand heights were higher than GEDI measurements showed greater variability, whereas locations with lower tree heights from forest type maps demonstrated lower SDs. The discrepancies between GEDI and actual measurements suggest the potential for improving height estimations through the application of high-resolution remote sensing techniques. To enhance future assessments of forest biomass and carbon storage at the Tier 3 level, high-resolution, reliable data are essential. These findings underscore the urgent need for integrating high-resolution, spatially explicit LiDAR data to enhance the accuracy of carbon sink calculations in Korea.

Innovation Technology Development & Commercialization Promotion of R&D Performance to Domestic Renewable Energy (신재생에너지 기술혁신 개발과 R&D성과 사업화 촉진 방안)

  • Lee, Yong-Seok;Rho, Do-Hwan
    • Journal of Korea Technology Innovation Society
    • /
    • v.12 no.4
    • /
    • pp.788-818
    • /
    • 2009
  • Renewable energy refers to solar energy, biomass energy, hydrogen energy, wind power, fuel cell, coal liquefaction and vaporization, marine energy, waste energy, and liquidity fuel made out of byproduct of geothermal heat, hydrogen and coal; it excludes energy based on coal, oil, nuclear energy and natural gas. Developed countries have recognized the importance of these energies and thus have set the mid to long term plans to develop and commercialize the technology and supported them with drastic political and financial measures. Considering the growing recognition to the field, it is necessary to analysis up-to-now achievement of the government's related projects, in the standards of type of renewable energy, management of sectional goals, and its commercialization. Korean government is chiefly following suit the USA and British policies of developing and distributing renewable energy. However, unlike Japan which is in the lead role in solar rays industry, it still lacks in state-directed support, participation of enterprises and social recognition. The research regarding renewable energy has mainly examinedthe state of supply of each technology and suitability of specific region for applying the technology. The evaluation shows that the research has been focused on supply and demand of renewable as well as general energy and solution for the enhancement of supply capacity in certain area. However, in-depth study for commercialization and the increase of capacity in industry followed by development of the technology is still inadequate. 'Cost-benefit model for each energy source' is used in analysis of technology development of renewable energy and quantitative and macro economical effects of its commercialization in order to foresee following expand in related industries and increase in added value. First, Investment on the renewable energy technology development is in direct proportion both to the product and growth, but product shows slightly higher index under the same amount of R&D investment than growth. It indicates that advance in technology greatly influences the final product, the energy growth. Moreover, while R&D investment on renewable energy product as well as the government funds included in the investment have proportionate influence on the renewable energy growth, private investment in the total amount invested has reciprocal influence. This statistic shows that research and development is mainly driven by government funds rather than private investment. Finally, while R&D investment on renewable energy growth affects proportionately, government funds and private investment shows no direct relations, which indicates that the effects of research and development on renewable energy do not affect government funds or private investment. All of the results signify that although it is important to have government policy in technology development and commercialization, private investment and active participation of enterprises are the key to the success in the industry.

  • PDF