• Title/Summary/Keyword: biological stability

Search Result 838, Processing Time 0.033 seconds

Development of Temporary Preservation Method for Small Scale Dairy Farm Milk by $H_2O$$_2$ Catalase Treatment (Part 1) Bactericidal Effect of Hydrogen Peroxide and Its Stability in Milk ($H_2O$$_2$-Catalase처리에 의한 소규모 목장우유의 일시적 보존법의 개발 (제1보) 우유에 있어서 과산화수소의 살균효과 및 안정성)

  • Park, I.S.;Pack, M.Y.
    • Microbiology and Biotechnology Letters
    • /
    • v.5 no.3
    • /
    • pp.113-118
    • /
    • 1977
  • Into the precontaminated farm milk hydrogen peroxide ($H_2O$$_2$) was added at the concentrations ranging from 0.01% to 0.05% and kept at 3$0^{\circ}C$ for 16 hours with periodical determinations for viable counts, residual $H_2O$$_2$, and lactic acid. Under the tested conditions the initial level of contaminated bacteria could be arrested from growing at least for 8, 12, and 16 hours by treating the milk with 0.01, 0.02. and 0.03 per cent of $H_2O$$_2$, respectively. Furthermore, when the $H_2O$$_2$concentrations ware limited within the level of 0.03 Per cent the added $H_2O$$_2$was completely decomposed within 12 hours without the aid of external catalase and the decomposition time decreased in parallel with the $H_2O$$_2$ concentrations. A safer use of $H_2O$$_2$for preserving farm milk temporarily by limiting its concentration has been discussed.

  • PDF

Rest-activity circadian rhythm in hospitalized older adults with mild cognitive impairment in Korea and its relationship with salivary alpha amylase: an exploratory study (노인요양병원에 입원한 경도인지장애 노인의 휴식-활동 일주기 리듬에 관한 탐색적 연구: 타액 알파 아밀라제와의 관련성을 중심으로)

  • Minhee Suh;Jihye Choi
    • Journal of Korean Biological Nursing Science
    • /
    • v.25 no.4
    • /
    • pp.306-315
    • /
    • 2023
  • Purpose: This study aimed to evaluate the rest-activity circadian rhythm (RAR) using data obtained from wearable actigraph devices in hospitalized older adults with mild cognitive impairment (MCI), and to investigate its relationship with salivary alpha amylase (sAA). Methods: This secondary data analysis used data from the Hospitalized Older Adults' Cognition and Physical Activity Study. Actigraph data for 3-4 days were analyzed for RAR. RAR indices such as interdaily stability (IS), intradaily variability (IV), activity level during the most active 10-hour period and during the most least active 5-hour period, and relative amplitude (RA) were calculated. Data on sAA collected in the morning and general characteristics, including body mass index (BMI), were analyzed. Results: Data from 92 hospitalized older adults with MCI were analyzed. The IS, IV, RA were 0.23, 0.73, 0.88, respectively. The average level of sAA was 77.02 U/mL, and a higher level of sAA was significantly associated with better IS and RA in the regression analysis, while age, BMI, and cognitive level were not. BMI showed positive correlations with IS and RA. Conclusion: RAR in the hospitalized older adults with MCI was attenuated, showing especially low IS, which implies they failed to maintain regular and repetitive 24-hour RAR. Increased sAA and BMI were associated with robust RAR. Nurses need to pay attention to maintain robust RAR in hospitalized older adults with MCI, and strategies should be developed to improve their RAR.

In situ UHV TEM studies on nanobubbles in graphene liquid cells

  • Shin, Dongha;Park, Jong Bo;Kim, Yong-Jin;Kim, Sang Jin;Kang, Jin Hyoun;Lee, Bora;Cho, Sung-Pyo;Novoselov, Konstantin S.;Hong, Byung Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.102-102
    • /
    • 2016
  • Water, which is most abundant in Earth surface and very closely related to all forms of living organisms, has a simple molecular structure but exhibits very unique physical and chemical properties. Even though tremendous effort has been paid to understand this nature's core substance, there amazingly still lefts much room for scientist to explore its novel behaviors. Especially, as the scale goes down to nano-regime, water shows extraordinary properties that are not observable in bulk state. One of such interesting features is the formation of nanoscale bubbles showing unusual long-term stability. Nanobubbles can be spontaneously formed in water on hydrophobic surface or by decompression of gas-saturated liquid. In addition, the nanobubbles can be generated during electrochemical reaction at normal hydrogen electrode (NHE), which possibly distorts the standard reduction potential at NHE as the surface nanobubble screens the reaction with electrolyte solution. However, the real-time evolution of these nanobubbles has been hardly studied owing to the lack of proper imaging tools in liquid phase at nanoscale. Here we demonstrate, for the first time, that the behaviors of nanobubbles can be visualized by in situ transmission electron microscope (TEM), utilizing graphene as liquid cell membrane. The results indicate that there is a critical radius that determines the long-term stability of nanobubbles. In addition, we find two different pathways of nanobubble growth: i) Ostwald ripening of large and small nanobubbles and ii) coalescence of similar-sized nanobubbles. We also observe that the nucleation and growth of nanoparticles and the self-assembly of biomolecules are catalyzed at the nanobubble interface. Our finding is expected to provide a deeper insight to understand unusual chemical, biological and environmental phenomena where nanoscale gas-state is involved.

  • PDF

Quantitative Analysis and Preformulation of Extracts from Alnus Japonica

  • Baek, Jong-Suep;Kang, Hee-Chul;Keum, Chang-Gu;Lim, Ji-Ho;Hwang, Chan-Ju;Na, Young-Guk;Tung, N.H.;Kim, Young-Ho;Cho, Cheong-Weon
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.4
    • /
    • pp.227-232
    • /
    • 2011
  • Alnus japonica has been known to exert antioxidative, anti-inflammatory, anti-cancer and immune response inhibitory effects. The aim of this study was to figure out the characteristics of extracts obtained with different extraction solvent such as water, 100% ethanol, 70% ethanol or 70% methanol because characteristic components such as oregonin and hirsutanone extracted from Alnus japonica might be essential for the biological activity. For this purpose, oregonin and hirsutanon of four extracts, index ingredient of Alnus japonica, were analyzed with HPLC and physicochemical studies such as SEM, particle size and zeta potential were conducted. In cell cytotoxicity study, extract of water showed the highest cytotoxicity among four extracts. In case of oregonin, 70% MeOH and water extracts showed high contents and in case of hirsutanone, all extracts showed similar contents except 70% EtOH extracts. The extract of 70% MeOH from Alnus japonica for both oregonin and hirsutanone appeared to have the highest content. Both oregonin and hirsutanone extracted from Alnus japonica using 70% methanol showed stability in pH 1.2.

Characteristic of neuroblastoma cell (SH-SY5Y) culture on the crystalline diamond film (다결정 다이아몬드 필름의 신경종양세포(SH-SY5Y) 배양 특성)

  • Nam, Hyo-Geun;Oh, Hong-Gi;Kim, Dae-Hoon;Kim, Min-Hye;Park, Hye-Bin;Jhee, Kwang-Hwan;Song, Kwang-Soup
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.10-15
    • /
    • 2013
  • In order to fabricate high sensitive and stable biosensors, we require the material with superior biocompatibility and physical-chemical stability. Many kinds of biomaterials have been evaluated to apply for bioindustry. Recently, carbon based diamond thin films have been focal pointed as bio-applications and their possibility has been evaluated. Diamond thin film has many advantages for electrochemical and biological applications, such as wide potential window (3.0-3.5V), low background current and chemical-physical stability. In this work, we have cultured neuroblastoma cell (SH-SY5Y) on the crystalline diamond films. We use MTT assay to evaluate the characteristic of cell culture on the substrates. As a result, neuroblastoma cell was cultured on the crystalline diamond film as similar as cell culture dish.

A Study on the Interface Micromotions of Cementless Artificial Hip Replacement by Three-Dimensional FEM (무시멘트형 인공고관절 대치술후 초기의 경계면 미세운동의 3차원 FEM 연구)

  • Kim, S.K.;Chae, S.W.;Choi, H.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.71-74
    • /
    • 1994
  • In cementless total hip arthroplasty(THA), an initial stability of the femoral component is mandatory to achieve bony ingrowth and secondary long term fixation. Bone ingrowth depends strongly on relative micromotion and stress distributions at the interface. Primary stability of the femoral component can be obtained by minimizing the magnitude of relative micromotions at bone-prosthesis interface, Hence an accurate evaluation of interface behavior and stress/strain fields in the bone implant system may be relevant for better understanding of clinical situations and improving THA design. However, complete evaluation of load transfer in the bone remains difficult to assess experimentally, Hence, recently finite element method (FEM) was introduced in orthopaedic research field to fill the gap due to its unique capacity to evaluate stress in structure of complex shape, loading and material behavior. The authors developed the 3-dimensional numerical finite element model which is composed of totally 1179 elements off and 8 node blick. We also analyzed the micromotions at the bone-stem interface and mechanical behavior of existing bone prosthesis for a loading condition simulating the single leg stance. The result indicates that the values of relative motion for this well fit Multilock stem were $150{\mu}m$ in maximum, $82{\mu}m$ in minimum, and the largest relative motion developed in medial region of proximal femur with anterior-posterior direction. The proximal region of the bone was much larger in motion than the distal region and the stress pattern shows high stress concentration on the cortex near the tip of the stem. These findings indicates that the loading in the proximal femoral bone in the early postoperative situation can produce micromotions on the interface and clinically cementless TEA patient should not be allowed weight bearing strictly early in the postoperative period.

  • PDF

The Effect of Human Lower Limb Vibration on Postural Stability during Unstable Posture (불안정한 자세에서 하지에 인가한 진동자극이 자세 안정성 개선에 미치는 영향)

  • Eun, H.I.;Yu, M.;Kim, D.W.;Kwon, T.K.;Kim, N.G.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.628-635
    • /
    • 2007
  • We studied the effect of vibratory stimulations of different leg muscles, tibialis anterior(TA) and triceps surae(TS), and plantar zones in ten healthy subjects during 1) quiet standing, 2) forward lean of body, 3) backward lean of body, 4) right lean of body, and 5) left lean of body. The experiments were performed on the force platform. The effect of vibration were measured by monitoring the area of COP(Center of pressure) sway. The subjects wore a vibratory stimulation system on foot and ankles and were given the instruction not to resist against the applied perturbations. The results show that all vibratory stimulations to lower limb muscles and plantar zones reduced the COP sway area. This reduction of the COP sway area occurred also in partial vibratory stimulations during quiet standing. In forward lean of body, vibratory stimulations to TA reduced the COP sway area. During backward lean of body, vibratory stimulations to TS reduced the COP sway area. When the subject was tilted right, vibratory stimulations to left plantar zone reduced the COP sway area. During left lean of body, vibratory stimulations to right plantar zone reduced the COP sway area. Thus, the influence of vibratory stimulations to leg muscle and plantar zones differed significantly depending on the lean of body. We suggest that the vibration stimuli from leg muscles and plantar zones could be selectively used to help maintaining postural balance stable.

3D Gait Analysis of Limb Salvage Patients with Osteoarticular Knee Allograft Reconstruction (슬관절 동종골을 이용한 사지 구제수술 환자의 3차원 보행분석)

  • Jang, Ik-Gyu;Park, Hong-Seong;Nam, Kyoung-Won;Hong, Man-Bok;Kim, Soo-Hyun;Kim, Han-Soo;Kang, Hyun-Guy;Kim, Kwang-Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.74-80
    • /
    • 2010
  • This paper presents the three dimensional gait analysis of the patients with osteoarticular knee allograft reconstruction. The gait analysis has been performed in some medical fields such as orthopedics and neurosurgery for the purpose of the rehabilitation of patients. However, to the author's knowledge, the analysis of gait for the patients with osteoarticular knee allograft reconstruction caused by tumor has not been reported. In this work, In this work, we confirmed the validity of this method by analyzing 50 samples per one gait cycle obtained from each of 3 patients and 3 normal persons. The motion capture was performed using six infrared cameras. The symmetry and stability of the gait patterns are investigated (patients' r=0.39, p<0.05, normal persons' r=0.65, p<0.05) respectively using the correlation coefficients and the standard deviations of the joint angles of the left and right legs. It also would be applied to the comparison analysis where artificial knee joint is transplanted.

Three-Dimensional Finite Element Analysis of Micromotion of the Straight and the Curved Femoral Stem in Cementless Hip Arthroplasty (인공고관절 직선형 대퇴 stem과 곡선형 대퇴 stem의 미세운동비교 - FEM 3차원 모델을 이용한 분석 -)

  • Kim, S.K.;Chae, S.W.;Jeong, J.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.245-248
    • /
    • 1997
  • Excessive stress on the bone-stem interface may cause local micromotion that could produce midthigh pain, interface bone resorption and prevent bony ingrowth. It is important for clinician and prosthetic designer to develop an understanding of the load transfer mechanism, its associated stress pattern and its relationships with the particular mechanical characteristics of the femoral stem designs. Finite element method (FEM) is preeminently suited to provide information in this respect. The authors developed 3-dimensional numerical finite element models implanted with the straight stem which is composed of total 1170 elements of 8 nodes and with the curved stem which is composed of total 885 elements of 8 node, and analysed the relative micromotions between the straight stem and the curved stem in immediate postoperative stage of an uncemented total hip replacement in load simulating the single leg stance. The results showed that the rotational displacement was occupied over 90% of total micromotion in both types of stem and was peak at the proximal medial portion of the stem, but markedly less distally. The curved stem was more stable especially in terms of rotational stability. It is recommended that surgeons do not allow the patient weight bearing until bony ingrowth was achieved. In the future more attention should be drawn to increase initial rotational stability of the two types of femoral stem to prevent loosening from excessive micromotion.

  • PDF

Partial Oxidation of n-Octane over Rh-Containing Alumina-Supported Catalysts (알루미나에 담지된 Rh 함유 촉매의 n-옥탄 부분산화반응)

  • Lee, Shin-Hwa;Suh, Young-Woong;Suh, Dong-Jin;Park, Tae-Jin;Lee, Kwan-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.10-17
    • /
    • 2008
  • This study has been focused on the partial oxidation(POX) of n-octane over Rh-containing catalysts supported on alumina. The catalysts for this reaction were prepared by incipient wetness(IW) and co-gel(CG) methods, followed by the calcination at $900{\circ}C$ or $1,200{\circ}C$. When applied to the POX of n-octane carried out at $600{\circ}C$ with C/O=3 and GHSV=3,450/h, the catalyst prepared by the CG method and calcined at $1,200{\circ}C$ showed the best activity, yielding 42% syngas($H_2$+CO) with the $H_2$/CO ratio of $2{\sim}2.4$. To enhance the activity and stability of catalysts, bimetallic catalysts were synthesized by the CG method. As a result, the performance of Rh-Ni/$Al_2O_3$ catalyst was superior to that of Rh/$Al_2O_3$ catalyst in terms of the catalyst stability, due to the retarding effect on the Rh-to-$Rh_2O_3$ transition by the addition of Ni. This result was confirmed by XRD, TEM, and TPR characterizations.