• Title/Summary/Keyword: biological stability

Search Result 841, Processing Time 0.028 seconds

Antibacterial Mode of Action of Cinnamomum verum Bark Essential Oil, Alone and in Combination with Piperacillin, Against a Multi-Drug-Resistant Escherichia coli Strain

  • Yap, Polly Soo Xi;Krishnan, Thiba;Chan, Kok-Gan;Lim, Swee Hua Erin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1299-1306
    • /
    • 2015
  • This study aims to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of bacteria for this combination of essential oil and antibiotic showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oil. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.

Immobilization and properties of Streptomyces sp. S56 endoinulase (Streptomyces sp. S56 endoinulase의 고정화 및 성질)

  • Kim, Su-Il;Chang, Ho-Jin
    • Applied Biological Chemistry
    • /
    • v.35 no.5
    • /
    • pp.410-414
    • /
    • 1992
  • Endoinulase from Streptomyces sp. S56 was immobilized by adsorption on DEAE-cellulose in 0.01 M citrate-sodium phosphate buffer, pH 6.0 and the properties of immobilized and free enzymes were investigated. The immobilized enzyme preparation, having 40 inulase activity units per dried matrix, revealed the maximal activity at $pH\;4.5{\sim}5.5$ and $55{\sim}60^{\circ}C$ and were most stable at pH 6 and 45^{\circ}C$. The immobilization caused a drop in optimum pH and affinity toward inulin, a slight increase in optimum temperature, an important increase in thermal stability and maximum reaction velocity. The immobilized endoinulase hydrolyzed the tuber extract of jerusalem artichoke and inulin, mainly into fructose and inulobise, degrading 63 and 78% of the total sugar respectively, within 48 hrs in batch reactor.

  • PDF

Studies on Cellulase -Part 1. Isolation of Cellulase Forming Microorganisms and the Properties of Crude Enzymes- (Cellulase에 관(關)한 연구(硏究) -(제1보(第一報)) Cellulase 생성균(生成菌)의 분리(分離)와 조효소(粗酵素)의 제성질(諸性質)-)

  • Chung, Dong-Hyo
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.109-117
    • /
    • 1969
  • Out of some 400 strains of Microorganisms, cellulase forming organisms was isolated from night soil during the course of screening tests. Two strains, Ku-3371 and Ku-4383 were found capable of producing cellulase in the shaking culture. General properties of the crude enzyme were as the following results. 1. The optimum pH values on CMC-saccharifying, CMC-liquefying and filter paper disintegrating activities were 4.0 to 5.5. 2. The stable pH range was within 3.5 to 6.5, 3. The optimum temperature was $40-45^{\circ}C$, the thermal stability was below $50^{\circ}C$ except on paper disintegrating activity and completely inactivated at $70^{\circ}C$. 4. Dialyzed crude enzyme was activated by $Mn^{2+}\;and\;Co^{2+}$ repectively but $Hg^{2+}$ was strong inhibitor.

  • PDF

Characteristics and Applications of Immobilized Glucoamylase (고정화 글루코아밀라제의 성질과 응용)

  • Cho, Sung-Hwan;Kim, Ze-Uook
    • Applied Biological Chemistry
    • /
    • v.28 no.4
    • /
    • pp.233-238
    • /
    • 1985
  • Glucoamylases catalyze a stepwise hydrolysis of starch with the production of glucose. In order to make an efficient conversion of starch into glucose, glucoamylases prepared from Rhizopus spp. (Sigma Co.) were attached to a porous glass and immobilized by glutaraldehyde-induced crosslinking. The porous glass used in this study was $ZrO_2$ coated, $40{\sim}80$ mesh, 550 A pore diameter. Using the forgoing glass, we could couple as much as 50mg of protein per gram of carrier. Substrate for the glucoamylase was an enzyrne-modified thin-toiling 30% cornstarch solution used where greater solubility and low viscosity are desired. Immobilized glucoamylase had an optimum pH 7.0 to the alkaline side of soluble enzyme. Km values of immobilized and soluble enzyme were 1.04 mM and 1.25mM, respectively. The thermal stability of glucoamylase was increased by immobilization and the immobilized enzyme showed an optimum temperature at $40{\sim}60^{\circ}C$. The continuous conversion of cornstarch to glucose by use of immobilized glucoamylase resulted in the production of a more than 90 DE product.

  • PDF

Characteristics of Endo-Polygalacturonase from Korean jujube (한국산 대추의 Endo-Polygalacturonase의 특성)

  • Choi, Cheong;Chun, Sung-Sook;Cho, Young-Je;Ahn, Bong-Jeon;Kim, Young-Hwal;Lee, Seon-Ho;Kim, Seong
    • Applied Biological Chemistry
    • /
    • v.37 no.5
    • /
    • pp.356-360
    • /
    • 1994
  • The optimum pH and temperature for endo-polygalacturonase activity from Jujube were 5.0 and $50^{\circ}C$. The range of its stability to pH was 4.0 to 5.0. The enzyme was inactivated about 35% by treatment at $70^{\circ}C$ for 1 hr. It was found that $Ag^+$, $Zn^{++}$ and $Mg^{++}$ increased the enzyme activity. In contrast, $Ba^{++}$, $Hg^{++}$, $Pb^{++}$, $Ca^{++}$, $Mn^{++}$, $Cu^{++}$, $Fe^{+++}$, $Na^+$ and $K^+$ decreased it. The enzyme was inactivated by treatment with maleic anhydride, iodine and 2,4-dinitrophenol. The results indicate that active site is a imidazole group on the enzyme.

  • PDF

Effect of Hydrocolloids on Rheological Properties of Bread Dough (Hydrocolloid가 빵 반죽의 레올로지 특성에 미치는 영향)

  • Cho, Hyun;Lee, Myung-Koo;Lee, Jeong-Hoon;Lee, Si-Kyung
    • Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.6-10
    • /
    • 2008
  • This study was carried out to investigate rheological properties of bread dough by adding hydrocolloids such as arabic gum, pectin and carboxyl methyl cellulose (CMC). 0.2% and 0.5% of each hydrocolloid were added to the dough. Farinograph, pH of dough, extensograph, fermometer and amylograph were analyzed. In farinograph, water absorption rate of dough was increased by adding hydrocolloids and the highest water absorption resulting in 70.8% was shown by adding 0.5% of CMC. Dough development time increased but stability decreased. pH of dough was lowered by adding hydrocolloids and pH of dough with 0.5% of pectin was the lowest. In extensograph, resistance of dough decreased but extensibility increased and R/E value lowered. In fermometer, $CO_2$ gas production increased and dough with 0.2% of CMC showed the largest gas production. In amylograph, initial gelatinization temperature increased by $0.5-1.5^{\circ}C$, but temperature for maximum viscosity was lowered by $1-1.5^{\circ}C$ and maximum viscosity was increased.

Meat Quality Traits of Longissimus Muscle of Hanwoo Steers as a Function of Interaction between Slaughter Endpoint and Chiller Ageing

  • Dashdorj, Dashmaa;Oliveros, Maria Cynthia R.;Hwang, In-Ho
    • Food Science of Animal Resources
    • /
    • v.32 no.4
    • /
    • pp.414-427
    • /
    • 2012
  • Carcass characteristics and meat quality traits as a function of endpoint months of slaughter age (26 vs 32 mon) and chiller ageing (1 vs 10 d) were evaluated for m. longissmus of 26 Hanwoo steers fed with commercial diets including whole crop barley silage. Totally twenty six Hanwoo steers for 6 mon of age that were fed until 26 mon of age constituted the short term-fed group and fed until 32 mon of age constituted long-term fed group. Carcasses were chilled for 24 h and were graded. Strip loin samples were divided into two age groups (1 d and 10 d). Long-term feeding increased carcass weight, rib-eye area, yield grade, marbling score, firmness and quality grade of the meat. The feeding for 32 mon produced tender, juicy meat (p<0.01) with lower cooking loss and higher rating score (p<0.05) than short term feeding, while other quality traits were not influenced by the length of feeding. Intramuscular fat content and oxidative stability (TBARS value) were significantly (p<0.05) higher in beef from long-term feeding however the length of feeding did not alter the fatty acid composition. Chiller aging reduced instrumental tenderness (WBSF value), improved color, sensory tenderness, acceptability and rating of beef. The results of the present study mirrors that Hanwoo steers until 32 mon of age overall improved carcass traits and palatability compared to that for 26 mon. However, from the viewpoints of economical and environmental aspects, cost of the additional feeding for 6 mon for value-adding of eating quality was relatively high and the effects in turn were limited.

Rice bran fermentation by lactic acid bacteria to enhance antioxidant activities and increase the ferulic acid, ρ-coumaric acid, and γ-oryzanol content

  • Le, Bao;Anh, Pham Thi Ngoc;Kim, Jung-Eun;Cheng, Jinhua;Yang, Seung Hwan
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.3
    • /
    • pp.257-264
    • /
    • 2019
  • Rice bran is considered a natural source of antioxidants. In this study, rice bran was fermented with lactic acid bacteria to increase its antioxidant activity. Four strains isolated from fermented food, Lactobacillus plantarum MJM60383, Lactococcus lactis subsp. lactis MJM60392, Lactobacillus fermentum MJM60393, and Lactobacillus paracasei MJM60396, were confirmed as safe through stability tests such as safety assessment for biogenic amine production, hemolytic activity, and mucin degradation, and showed high reducing capacity. The antioxidant activity of rice bran fermentation altered by these strains was evaluated using several methods including measurement of $Fe^{2+}$ chelating activity and scavenging activity by 1,1-diphenyl-2-picryl-hydrazil (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and nitric oxide assays. In this study, the total phenolic content and ${\gamma}$-oryzanol were evaluated by high-performance liquid chromatography. Compared to non-fermented rice bran and a commercial product, rice bran fermented with Lactococcus lactis subsp. lactis MJM60392 showed the highest phenolic content (844.13 mg GAE/g). Moreover, the content of ferulic acids, ${\rho}$-coumaric acid, and ${\gamma}$-oryzanol in rice bran increased after fermentation with L. lactis subsp. lactis MJM60392 and L. fermentum MJM60393 compared to other samples. Indeed, the DPPH radical scavenging activity and NO scavenging activity were also found to be high in these fermented rice brans. These results indicated that fermentation with lactic acid bacteria increases the active compound levels and the potent antioxidant activities of rice bran.

Improvement of Analytical Method for Propineb Residues in Glycine max (L.) Merrill and Pisum sativum L. using Deproteinization Process (고단백질 함유 대두와 완두 중 Propineb 잔류분석을 위한 제단백 효과)

  • Ham, Hun Ju;Choi, Jeong Yoon;Hur, Jang Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.3
    • /
    • pp.206-216
    • /
    • 2022
  • BACKGROUND: Dithiocarbamate fungicide propineb can be analyzed quantitatively by derivatization reaction followed by HPLC/UVD, which has high reproducibility and stability. However, the presence of high protein in soybeans and peas affects the derivatization process resulting in extremely low recoveries. Therefore, this study was conducted to improve the analytical method for analysis of propineb in soybeans and peas by applying a deproteinization process using chloroform-gel method. METHODS AND RESULTS: The deproteinization process was carried out up to 6 times for soybeans and 5 times for peas using 50 mL chloroform. After 4 times of deproteinization process followed by a derivatization reaction with methyl iodide, the recovery yields of propineb in both pulses were >90%. However, the recovery yield tended to decrease when the deproteinization process was performed more than 5 times. The method limit of quantification (LOQ) was 0.04 mg/L. The recovery conducted in triplicate at 10 times and 50 times of the LOQ ranged from 87.2 to 95.0 % with a coefficient of variation <10%. CONCLUSION(S): This study confirmed that 4 times of deproteinization process using the chloroform-gel method was effective when derivatizing and analyzing dithiocarbamate fungicides in pulses with high protein content. However, depending on the initial protein content present in the pulses, there was a difference in the recovery: the lower the protein content, the higher the recovery rate of propineb. It is expected that the method proposed in this study could be applied to remove high content of protein as analytical interference substance from agricultural samples.

Surface Modification and Bioactivity Improvement of 3Y-TZP Substrate by Spray Coating of Hydroxyapatite/Fosterite Composite Powder (하이드록시아파타이트/포스터라이트 복합분말의 분사코팅에 의한 3Y-TZP 기판의 표면개질과 생체활성 증진)

  • Yu Hyeon Yun;Jong Kook Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.337-343
    • /
    • 2023
  • 3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals) ceramics have excellent mechanical properties including high fracture toughness, good abrasion resistance as well as chemical and biological stability. As a result, they are widely used in mechanical and medical components such as bearings, grinding balls, and hip implants. In addition, they provide excellent light transmittance, biocompatibility, and can match tooth color when used as a dental implant. Recently, given the materials' resemblance to human teeth, these ceramics have emerged as an alternative to titanium implants. Since the introduction of CAD/CAM in the manufacture of ceramic implants, they've been increasingly used for prosthetic restoration where aesthetics and strength are required. In this study, to improve the surface roughness of zirconia implants, we modified the 3Y-TZP surface with a biocomposite of hydroxyapatite and forsterite using room temperature spray coating methods, and investigated the mixed effect of the two powders on the evolution of surface microstructure, i.e., coating thickness and roughness, and biological interaction during the in vitro test in SBF solution. We compared improvement in bioactivity by observing dissolution and re-precipitation on the specimen surface. From the results of in vitro testing in SBF solution, we confirmed improvement in the bioactivity of the 3Y-TZP substrate after surface modification with a biocomposite of hydroxyapatite and forsterite. Surface dissolution of the coating layer and the precipitation of new hydroxyapatite particles was observed on the modified surface, indicating the improvement in bioactivity of the zirconia substrate.