• Title/Summary/Keyword: biological reactor

Search Result 503, Processing Time 0.024 seconds

Dosimetric Characteristics of a Thermal Neutron Beam Facility for Neutron Capture Therapy at HANARO Reactor (하나로 원자로 BNCT 열중성자 조사장치에 대한 선량특성연구)

  • Lee, Dong-Han;Suh, So-Heigh;Ji, Young-Hoon;Choi, Moon-Sik;Park, Jae-Hong;Kim, Kum-Bae;Yoo, Seung-Yul;Kim, Myong-Seop;Lee, Byung-Chul;Chun, Ki-Jung;Cho, Jae-Won;Kim, Mi-Sook
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.87-92
    • /
    • 2007
  • A thermal neutron beam facility utilizing a typical tangential beam port for Neutron Capture Therapy was installed at the HANARO, 30 MW multi-purpose research reactor. Mixed beams with different physical characteristics and relative biological effectiveness would be emitted from the BNCT irradiation facility, so a quantitative analysis of each component of the mixed beams should be performed to determine the accurate delivered dose. Thus, various techniques were applied including the use of activation foils, TLDs and ionization chambers. All the dose measurements were perform ed with the water phantom filled with distilled water. The results of the measurement were compared with MCNP4B calculation. The thermal neutron fluxes were $1.02E9n/cm^2{\cdot}s\;and\;6.07E8n/cm^2{\cdot}s$ at 10 and 20 mm depth respectively, and the fast neutron dose rate was insignificant as 0.11 Gy/hr at 10 mm depth in water The gamma-ray dose rate was 5.10 Gy/hr at 20 mm depth in water Good agreement within 5%, has been obtained between the measured dose and the calculated dose using MCNP for neutron and gamma component and discrepancy with 14% for fast neutron flux Considering the difficulty of neutron detection, the current study support the reliability of these results and confirmed the suitability of the thermal neutron beam as a dosimetric data for BNCT clinical trials.

  • PDF

Plasma-assisted Catalysis for the Abatement of Isopropyl Alcohol over Metal Oxides (금속산화물 촉매상에서 플라즈마를 이용한 IPA 저감)

  • Jo, Jin Oh;Lee, Sang Baek;Jang, Dong Lyong;Park, Jong-Ho;Mok, Young Sun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.375-382
    • /
    • 2014
  • This work investigated the plasma-catalytic decomposition of isopropyl alcohol (IPA) and the behavior of the byproduct compounds over monolith-supported metal oxide catalysts. Iron oxide ($Fe_2O_3$) or copper oxide (CuO) was loaded on a monolithic porous ${\alpha}-Al_2O_3$ support, which was placed inside the coaxial electrodes of plasma reactor. The IPA decomposition efficiency itself hardly depended on the presence and type of metal oxides because the rate of plasma-induced decomposition was so fast, but the behavior of byproduct formation was largely affected by them. The concentrations of the unwanted byproducts, including acetone, formaldehyde, acetaldehyde, methane, carbon monoxide, etc., were in order of $Fe_2O_3/{\alpha}-Al_2O_3$ < $CuO/{\alpha}-Al_2O_3$ < ${\alpha}-Al_2O_3$ from low to high. Under the condition (flow rate: $1L\;min^{-1}$; IPA concentration: 5,000 ppm; $O_2$ content: 10%; discharge power: 47 W), the selectivity towards $CO_2$ was about 40, 80 and 95% for ${\alpha}-Al_2O_3$, $CuO/{\alpha}-Al_2O_3$ and $Fe_2O_3/{\alpha}-Al_2O_3$, respectively, indicating that $Fe_2O_3/{\alpha}-Al_2O_3$ is the most effective for plasma-catalytic oxidation of IPA. Unlike plasma-alone processes in which tar-like products formed from volatile organic compounds are deposited, the present plasma-catalyst hybrid system did not exhibit such a phenomenon, thus retaining the original catalytic activity.

A Study on Optimal Packing Volume of Media in Swirl Flow Biological Fluidized Bed (선회류 생물학적 유동상의 최적 메디아 충전량에 관한 연구)

  • Choi, Doo-Hyoung;Kim, Hwan-Gi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.331-340
    • /
    • 2000
  • The existing two-phase biological fluidized bed has some problems such as limit of oxygen transfer and blockade of fluidized distributor. In this study, three-phase swirl flow biological fluidized bed has designed to solve the problems and to investigate its running characteristics. TOC of influent synthetic wastewater was approximately $70mg/{\ell}$. HRT of reactor was 1.6 hours. Mean particle size of sand, as packing media, was 0.397mm and packing volume was varied from $200m{\ell}/{\ell}$ to $600m{\ell}/{\ell}$ by stages in the bed. The amount of biomass and effluent water quality was throughly investigated in the bed. Showing experiment results from the above conditions, it was possible to solve the problems of existing fluidized bed and to keep DO of $3mg/{\ell}$ or more. And it was also TOC removal rate of 91 to 94 %, MLVSS of 2,360 to $3,860mg/{\ell}$, MLVSS per g-media of 8.4 to 17.3 mg/g, F/M ratio of 0.59 to $1.04kg-TOC/kg-MLVSS{\cdot}day$, biofilm thickness of $35{\sim}71{\mu}m$ and sludge productivity of 1.03 to $2.35kg-SS/m^3{\cdot}day$. Optimal conditions in this experimental were as follows.; those were biofilm thickness of approximately $54{\mu}m$. MLVSS per g-media of 13 mg and media packing volume of 350 to $400m{\ell}/{\ell}$ when F/M ratio was low, treatment efficiency was high and sludge productivity was low. Showing the media with optics microscope in this optimal condition, attached microbes such as Epistylis sp. were observed. From SEM photographs, it showed that Coccus adhere to and grow on the media surface.

  • PDF

A Comparative Study on Enhanced Phytoremediation of Pb Contaminated Soil with Phosphate Solubilizing Microorganism(PSM) and EDTA in Column Reactor (칼럼 반응조에서 Phosphate Solubilizing Microorganism(PSM)과 EDTA에 의한 납 오염토양의 식물상 복원 증진에 관한 비교연구)

  • Nam, Yoon-Sun;Park, Young-Ji;Lee, In-Sook;Bae, Bum-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.500-506
    • /
    • 2008
  • Enhanced phytoremediation with EDTA or PSM(Phosphate solubilizing microorganism) was studied using green foxtail (Setaria viridis) in columns packed with 1,200 mgPb/kg contaminated soil to investigate the effects of EDTA or PSM on the plant uptake and vertical migration of Pb. EDTA, equimolar amount of total Pb in the column soil, was administered in two methods: the one was treated with 1/6 aliquots of the equimolar EDTA every week for 6 weeks and the other was treated with single dose of the equimolar EDTA before 14 days of harvest. The results showed that higher concentrations of Pb accumulated in the biomass of green fowtail after the chemical or biological treatment. The plant-root Pb concentration in PSM treatment(M), EDTA aliquot treatment(ES), and single dose treatment(E) was 2.6, 3.0, and 3.3 times higher, respectively, than that in the plant-root of control(164.7 mg/kg). The plant-stem Pb concentration in the M, ES and E treatment was 27, 37, and 40 times higher than that in the stem of control(8.1 mg/kg). The translocation factor, the ratio of shoot/root Pb concentration, was 0.6 in the two EDTA treatment, 0.5 in the M treatment, and 0.05 in the control, respectively. The largest amount of Pb was phyto-extracted in the E treatment whereas vertical migration of EDTA was significant in the ES treatment. This result showed that a single large dose of EDTA before harvest serves better for enhanced phytoremediation of Pb. Although, treatment with PSM showed less Pb phytoextraction by the plant but enhanced both the growth of plants in the column and microbial dehydrogenase activity in the soils. Therefore, enhanced phytoextraction of Pb with PSM treatment can be an alternative option for EDTA treatment, which is toxic to plants and soil ecosystem.

Effects of Antimicrobials on Methane Production in an Anaerobic Digestion Process (혐기소화공정에서 항생항균물질이 메탄생성에 미치는 영향)

  • Oh, Seung-Yong;Park, Noh-Back;Park, Woo-Kyun;Chun, Man-Young;Kwon, Soon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.295-303
    • /
    • 2011
  • BACKGROUND: Anaerobic digestion process is recently adapted technology for treatment of organic waste such as animal manure because the energy embedded in the waste can be recovered from the waste while the organic waste were digested. Ever increased demand for consumption of meat resulted in the excessive use of antimicrobials to the livestocks for more food production. Most antimicrobials administered to animals are excreted through urine and feces, which might highly affect the biological treatment processes of the animal manure. The aim of this study was to investigate the effects of antimicrobials on the efficiency of anaerobic digestion process and to clarify the interactions between antimicrobials and anaerobes. METHODS AND RESULTS: The experiment was consisted of two parts 1) batch test to investigate the effects of individual antibiotic compounds on production of methane and VFAs(volatile fatty acids), and removal efficiency of organic matter, and 2) the continuous reactor test to elucidate the effects of mixed antimicrobials on the whole anaerobic digestion process. The batch test showed no inhibitions in the rate of methane and VFAs production, and the rate of organic removal were observed with treatment at 1~10 mg/L of antimicrobials while temporary inhibition was observed at 50 mg/L treatment. In contrast, treatment of 100 mg/L antimicrobials resulted in continuous decreased in the rate of methane production and organic removal efficiency. The continuous reactor test conduced to see the influence of the mixed antimicrobials showed only small declines in the methane production and organic matter removal when 1~10 mg/L of combined antimicrobials were applied but this was not significant. In contrast, with the treatment of 50 mg/L of combined antimicrobials, the rate of organic removal efficiency in effluent decreased by 2~15% and the rate of biogas production decreased by 30%. CONCLUSION(s): The antimicrobials remained in the animal manure might not be removed during the anaerobic digestion process and hence, is likely to be released to the natural ecosystem. Therefore, the efforts to decline the usage of antimicrobials for animal farming would be highly recommended.

Method of Reducing Separation Membrane Fouling Using Microbubbles (마이크로버블을 이용한 분리막 파울링 저감방법)

  • Kyung-Hwan Ku;Younghee Kim
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • Due to water shortages caused by water pollution and climate change, total organic carbon (TOC) standards have been implemented for wastewater discharged from public sewage treatment facilities. Furthermore, there is a growing interest and body of research pertaining to the reuse of sewage treatment water as a secure alternative water resource. The membrane bio-reactor (MBR) method is commonly used for advanced wastewater treatment because it can remove organic and inorganic ions and it does not require or emit any chemicals. However, the MBR process uses a separation membrane (MF), which requires frequent film cleaning due to fouling caused by a high concentration of mixed liquor suspended solid (MLSS). In this study, process improvement and microbubble cleaning efficiency were evaluated to improve the differential pressure, water flow, and MF fouling, which are the biggest disadvantages of operating the MF. The existing MBR method was improved by installing a precipitation tank between the air tank and the MBR tank in which raw water was introduced. Microbubbles were injected into a separation membrane tank into which the supernatant water from the precipitation tank was introduced. The microbubble generator was operated with a 15 day on, 15 day off cycle for 5 months to collect discharged water samples (4L) and measure TOC. As the supernatant water from the precipitation tank flowed into the separation membrane tank, about 95% of the supernatant water MLSS was removed so the MF fouling from biological contamination was prevented. Due to the application of microbubbles to supernatant water from the precipitation tank, the differential pressure of the separation membrane tank decreased by 1.6 to 2.3 times and the water flow increased by 1.4 times. Applying microbubbles increased the TOC removal rate by more than 58%. This study showed that separately operating the air tank and the separation membrane tank can reduce fouling, and suggested that applying additional microbubbles could improve the differential pressure, water flow, and fouling to provide a more efficient advanced treatment method.

Anaerobic Reductive Dechlorination of Tetrachloroethylene (PCE) in Two-in-series Semi-continuous Soil Columns (반연속 흐름 2단 토양 컬럼에서의 사염화 에틸렌(PCE)의 혐기성 환원탈염소화)

  • Ahn, Young-Ho;Choi, Jeong-Dong;Kim, Young;Kwon, Soo-Youl;Park, Hoo-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.68-76
    • /
    • 2006
  • Anaerobic reductive dechlorination of tetrachloroethylene (PCE) to ethylene was investigated by performing laboratory experiments using semi-continuous flow two-in-series soil columns. The columns were packed with soils obtained from TCE-contaminated site in Korea. Site ground water containing lactate (as electron donor and/or carbon source) and PCE was pumped into the soil columns. During the first operation with a period of 50 days, injected mass ratio of lactate and PCE was 620:1 and incomplete reductive dechlorination of PCE to cis-DCE was observed in the columns. However, complete dechlorination of PCE to ethylene was observed when the mass ratio increased to 5,050:1 in the second operation, suggesting that the electron donor might be limited during the first operation period. Dechlorination rate of PCE to cis-DCE was $0.62{\sim}1.94\;{\mu}mol$ PCE/L pore volume/d and $2.76\;{\mu}mol$ cis-DCE/ L pore volume/d for that for cis-DCE to ethylene, resulting that net dechlorination rate in the system was 1.43 umol PCE/L pore volume/d. During the degradation of cis-DCE to ethylene, the concentration of hydrogen in column groundwater was $22{\sim}29\;mM$ and $10{\sim}64\;mM$ for the degradation of PCE to cis-DCE. These positive results indicate that the TCE-contaminated groundwater investigated in this study could be remediated through in-situ biological anaerobic reductive dechlorination processes.

Effect of Operational Parameters on the Ammonia Stripping (암모니아 스트리핑에 미치는 운전인자의 영향)

  • Seo, Jeong-Beom;An, Kwang-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.935-939
    • /
    • 2006
  • The biological nutrient removal from domestic wastewater with low C/N ratio is difficult. Therefore, this study was performed to examine effect of operational parameters such as air supply, hydraulic retention time, pH on the nitrogen removal by ammonia stripping and to increase influent C/N ratio without required carbon source. The ammonia stripping system used for the bench-scale experiment in laboratory had a dimension of 15 cm diameter and 150 cm height. The ammonia stripping reactors were classified into two types, type AS I and type AS II, according to there using or not media. Results of the research showed that the T-N removal efficiency of AS I using plastic media is slightly higher than AS II without media. In experimental condition of air supply 30 L/min and pH 12.5, T-N removal efficiencies increased as HRT of ammonia stripping reactor became longer from 8 hr to 36 hr. In experimental condition of HRT 36 hr, it was also found that the T-N removal efficiencies improved through increase of air supply. On the other hand, C/N ratio of wastewater was increased from average 3.9 to 5.4 by ammonia stripping.

Wastewater Treatment Characteristics by Pseudomonas sp. BLP2052 and Flavobacterium sp. BLP20515 Isolated from Sewage (선별된 Pseudomonas sp. BLP2052와 Flavobacterium sp. BLP20515의 폐하수 처리 특성)

  • 박철환;최광근;임지훈;이상훈;김상용;이진원
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.153-159
    • /
    • 1999
  • Fifteen microbes have been isolated from Jangja pond in Kuri-Si, Kyeonggi-Do. Among them, two strains showed excellent COD removal from wastewater, which were named Pseudomonas sp. BLP2052 and Flavobacterium sp. BLP20515, respectively. Optimal pH and temperature for the cell growth were 7.0 and $30^{\circ}C$ for both strains. Pseudomonas sp. BLP2052 and Flavobacterium sp. BLP20515 was applied to the reactor to treat wastewater and 66.0% and 65.7% COD (chemical oxygen demand) removal was achieved, respectively. Comparing these results to the case of applying mixed microbes present in Jangja pond, COD removal rate was 15% less. But when adding the selected microbes to the wastewater containing mixed microbes, COD removal rate increased by 5%. After 84 hour operation, we achieved 85.6% COD removal. When inhibitors were added less than 100 ppm, during the microbial wastewater treatment, Fe, Zn, Al, phenol and Cr influenced microbial activity more deterioratively in order. In the case of over 300 pm, Cr, Fe, Zn, Al and phenol showed severe deteriorative effect in order.

  • PDF

A Study on Dissolve and Remove Analysis of Organic Chemicals Using a Mixed Method of Advanced Oxidation and Micro Filtering - Water Drinking Point - (고도산화와 정밀여과의 혼성공법을 이용한 유기화학물질의 분해 및 제거분석에 관한 연구 - 먹는 물을 중심으로 -)

  • An, Tai-Young;Jun, Sang-Ho;Ahn, Tae-Seok;Han, Mi-Ae;Hur, Jang-Hyun;Pak, Mi-Young
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.99-111
    • /
    • 2007
  • It is impossible to remove toxic organic substances that are recognized as a cancer caused suspicious element in drinking water using the conventional water purification method. This study introduces groundwater into a reaction chamber as an effective amount of water to process this water using a mixed method of AOP oxidation and M/F membrane and purifies it as a desirable level by artificially mixing such toxic substances in order to effectively process the water. Based on this fact, this study configures an optimal operation condition. The VOCs existed in toxic substances was investigated as a term of phenol and toluene, and agricultural chemicals were also investigated as a term of parathion, diazinon and carbaryl. The experiment applied in this study was performed using a single and composite soolution. In the operation condition applied to fully dissolve and remove such substances, the amount of $H_2O_2$ injected in the process was 150 mL of a fixed quantity, the value of pH was configured as $5.5{\sim}6.0$, the temperature was controlled as a range of $12{\sim}16^{\circ}C$, the dissolved amount of ozone was applied more than 5.0 mg/L, the reaction time was determined as an optimal condition, such as $30{\sim}40$ minutes, and the segregation membrane in the same reactor was determined for acquire water drinking of large quantity using a pore size of $0.45{\mu}m$ M/F membrane.