• Title/Summary/Keyword: biological pollutants

Search Result 298, Processing Time 0.034 seconds

Application on Multi-biomarker Assessment in Environmental Health Status Monitoring of Coastal System (해역 건강도 평가를 위한 다매체 바이오마커 적용)

  • Jung, Jee-Hyun;Ryu, Tae-Kwon;Lee, Taek-Kyun
    • Ocean and Polar Research
    • /
    • v.30 no.1
    • /
    • pp.109-117
    • /
    • 2008
  • Application of biomarkers for assessing marine environmental health risk is a relatively new field. According to the National Research Council and the World Health Organization, biomarkers can be divided into three classes: biomarkers of exposure, biomarkers of effect, and biomarkers of susceptibility. In order to assess exposure to or effect of the environmental pollutants on marine ecosystem, the following set of biomarkers can be examined: detoxification, oxidative stress, biotransformation products, stress responses, apoptosis, physiological metabolisms, neuromuscular responses, reproductions, steroid hormones, antioxidants, genetic modifications. Since early 1990s, several biomarker research groups have developed health indices of marine organisms to be used for assessing the state of the marine environment. Biomarker indices can be used to interpret data obtained from monitoring biological effects. In this review, we will summarize Health assessment Index, Biomarker Index, Bioeffect Assessment Index and Generalized Linear Model. Measurements of biomarker responses and development of biomarker index in marine organisms from contaminated sites offer great a lot of information, which can be used in environmental monitoring programs, designed for various aspects of ecosystem risk assessment.

Water Quality Improvement of Pocheon Stream Using Freshwater Bivalves: Development and Operation of Continuous Removal of Organic Matter in Streams (S-CROM) (포천천 수질개선을 위한 패류의 이용 하천형 유기물 제어(S-CROM) 기술의 적용)

  • Kim, Baik-Ho;Lee, Ju-Hwan;Kim, Yong-Jae;Hwang, Su-Ok;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.317-330
    • /
    • 2009
  • To diminish the levels of organic matters, a novel S-CROM (continuous removal of organic matters in the stream system using freshwater bivalve), was developed and applied to the polluted stream discharging from the wastewater treatment plant, Pocheon stream, Pocheon city (Korea). Major pollutants of the stream were human population and industrial wastewaters. The study was conducted at a small dam constructed within the stream, often called 'bo', and designed with four tanks; no mussels and no sediment (negative control), no mussels and sediment (positive control), 30 mussels and sediment (D1), and 60 mussels and sediment (D2). Physicochemical and biological parameters were measured at 12 hours interval (day and night) after mussel stocking. Results indicated that Anodonta woodiana Lea (D2) clearly removed approximately 72% of chl-$\alpha$ and 57% of suspended solids on second day, however, there were no differences in removal activities between animal densities (P>0.5). Dislike a laboratory CROM system, which previously developed, there were no huge release of nutrient ($NH_3$-N and SRP), due perhaps to the higher flow rate and the lower animal density. Therefore, we may suggest that if we can determine the relevant current and the animal density considering the stream state, an S-CROM system has a strong potential to water quality improvement of eutrophic streams. Some characteristics on both CROM and S-CROM were compared.

Properties of a Hexane-Degrading Consortium (Hexane 분해 혼합균의 특성)

  • Lee Eun-Hee;Kim Jaisoo;Cho Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.3
    • /
    • pp.215-221
    • /
    • 2005
  • It was characterized the hexane biodegradation and mineralization using a hexane-degrading consortium, and analyzed its bacterial community structure by 16S rDNA PCR-DGGE (denaturing gradient gel electrophoresis). The specific growth rate (${\mu}_{max}$) of the hexane-degrading consortium was 0.2 $h^{-1}$ in mineral salt medium supplemented with hexane as a sole carbon source. The maximum degradation rate ($V_{max}$) and saturation constant ($K_{s}$) of hexane of the consortium are 460 ${\mu}mol{\cdot}g-DCW^{-1}{\cdot}h^{-1}$ and 25.87 mM, respectively. In addition, this consortium could mineralize $49.1{\%}$ of $^{14}C$-hexane to $^{14}CO_2$, and $43.6{\%}$ of $^{14}C$-hexane) was used for the growth of biomass. The clones isolated from the DGGE bands were closely related to the bacteria which were capable of degrading pollutants such as oil, biphenyl, PCE, and waste gases. The hexane-degrading consortium obtained in this study can be applied for the biological treatment of hexane.

Biodegradation of Recalcitrant Chlorinated Aromatic Compounds via Microbial Dechlorination (미생물의 탈염소화 작용에 의한 난분해성 염화방향족 오염물질의 분해)

  • 채종찬;김치경
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.2
    • /
    • pp.129-138
    • /
    • 1999
  • Chlorinated aromatic compounds are one of the largest groups of environmental pollutants as a result of world-wide distribution by using them as herbicides, insecticides, fungicides, solvents, hydraulic and heat transfer fluids, plasticizers, and intermediates for chemical synthesis. Because of their toxicity, persistence, and bioaccumulation, the compounds contaminated ubiquitously in the biosphere has attracted public concerns in terms of serious influences to wild lives and a human being, such as carcinogenicity, mutagenicity, and disturbance in endocrine systems. The biological recalcitrance of the compounds is caused by the number, type, and position of the chlorine substituents as well as by their aromatic structures. In general, the carbon-halogen bonds increase the recalcitrance by increasing electronegativity of the substituent, so that the dechlorination of the compounds is focused as an important mechanism for biodegradation of chlorinated aromatics, along with the cleavage of aromatic rings. The removal of the chlorine substituents has been known as a key step for degradation of chlorinated aromatic compounds under aerobic condition. This can occur as an initial step via oxygenolytic, reductive, and hydrolytic mechanisms. The studies on the biochemistry and genetics about microbial dechlorination give us the potential informations for microbial degradation of xenobiotics contaminated in natural microcosms. Such investigations might provide biotechnological approaches to solve the environmental contamination, such as designing effective bioremediation systems using genetically engineered microorganisms.

  • PDF

Operating Parameters and Performance of Biotrickling Filtration for Air Pollution Control (대기오염물질 제어를 위한 생물살수여과법의 운전인자와 성능평가)

  • Won, Yang-Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.474-484
    • /
    • 2005
  • Biological treatment is a promising alternative to conventional air pollution control methods. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing volatile organic compounds and odor compounds. They offer several advantages over traditional technologies such as incineration or adsorption. These include lower treatment costs, absence of formation of secondary pollutants, no spent chemicals, low energy demand and low temperature treatment. The most widely used bioreactor for air pollution control is biofilter, but it has several limitations. In the past years major progress has been accomplished in the development of vapor phase bioreactor, in particular biotrickling filters. Biotrickling filters are more complex than biofilters, but are usually more effective, especially for the treatment of compounds which are difficult to degrade or compounds that generate acidic by-products. While the level of understanding of biotrickling filtration process for VOCs still remains limited, the evident success of biotreatment of VOC in air stimulated the pursue of acitve research. This paper presents fundamental and theoretical/practical aspect of air pollution control in biotrickling filter. Special emphasis is given to the operating parameters and the factors influencing performance for air pollution control in biotrickling filter.

Stem Cells and Cell-Cell Communication in the Understanding of the Role of Diet and Nutrients in Human Diseases

  • Trosko James E.
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2007
  • The term, "food safety", has traditionally been viewed as a practical science aimed at assuring the prevention acute illnesses caused by biological microorganisms, and only to a minor extent, chronic diseases cause by chronic low level exposures to natural and synthetic chemicals or pollutants. "food safety" meant to prevent microbiological agents/toxins in/on foods, due to contamination any where from "farm to Fork", from causing acute health effects, especially to the young, immune-compromised, genetically-predisposed and elderly. However, today a broader view must also include the fact that diet, perse (nutrients, vitamins/minerals, calories), as well as low level toxins and pollutant or supplemented synthetic chemicals, can alter gene expressions of stem/progenitor/terminally-differentiated cells, leading to chronic inflammation and other mal-functions that could lead to diseases such as cancer, diabetes, atherogenesis and possibly reproductive and neurological disorders. Understanding of the mechanisms by which natural or synthetic chemical toxins/toxicants, in/on food, interact with the pathogenesis of acute and chronic diseases, should lead to a "systems" approach to "food safety". Clearly, the interactions of diet/food with the genetic background, gender, and developmental state of the individual, together with (a) interactions of other endogenous/exogenous chemicals/drugs; (b) the specific biology of the cells being affected; (c) the mechanisms by which the presence or absence of toxins/toxicants and nutrients work to cause toxicities; and (d) how those mechanisms affect the pathogenesis of acute and/or chronic diseases, must be integrated into a "system" approach. Mechanisms of how toxins/toxicants cause cellular toxicities, such as mutagenesis; cytotoxicity and altered gene expression, must take into account (a) irreversible or reversal changes caused by these toxins or toxicants; (b)concepts of thresholds or no-thresholds of action; and (c) concepts of differential effects on stem cells, progenitor cells and terminally differentiated cells in different organs. This brief Commentary tries to illustrate this complex interaction between what is on/in foods with one disease, namely cancer. Since the understanding of cancer, while still incomplete, can shed light on the multiple ways that toxins/toxicants, as well as dietary modulation of nutrients/vitamins/metals/ calories, can either enhance or reduce the risk to cancer. In particular, diets that alter the embryo-fetal micro-environment might dramatically alter disease formation later in life. In effect "food safety" can not be assessed without understanding how food could be 'toxic', or how that mechanism of toxicity interacts with the pathogenesis of any disease.

Biotreatment Technologies for Air Pollution Control (생물학적 처리기술을 이용한 대기오염 제어)

  • Won, Yang-Soo
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.1-15
    • /
    • 2007
  • Biological treatment is a relatively recent air pollution control technology in which off-gases containing biodegradable odors and volatile organic compounds(VOCs) are vented through microbes. It is a promising alternative to conventional air pollution control methods. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing VOCs and odor compounds. They offer several advantages over traditional technologies such as incineration or adsorption. These include lower treatment costs, absence of formation of secondary pollutants, no spent chemicals, low energy demand and low temperature treatment. The three most widely used technologies are described, namely biofiltration, biotrickling filtration, bioscrubbing. The most widely used bioreactor for air pollution control is biofilter, but it has several limitations. In the past years major progress has been accomplished in the development of vapor phase bioreaction systems, for solving problems of biofilter. Biotrickling filters are more complex than biofilters, but are usually more effective, especially for the treatment of compounds which are difficult to degrade or compounds that generate acidic by-products. This, paper reviews fundamental and theoretical/practical aspect of air pollution control in biofilter, biotrickling filter and bioscrubber, focusing more extensively on biotrickling filtration. Special emphasis is given to the operating parameters and the factors influencing performance for air pollution control, and cost estimation in biotreatment technologies.

  • PDF

Weathering and Deterioration Diagnosis for Conservation Sciences of Stone Pagoda in the Bunhwangsa Temple,Gyeongju, Korea (경주 분황사 모전석탁의 암석학적 풍화와 보존과학적 훼손도 진단)

  • Yi, Jeong-Eun;Lee, Chan-Hee;Lee, Myeong-Seong;Kim, Young-Taek
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.92-100
    • /
    • 2004
  • The host rocks of brick-shaped stone pagoda in the Bunhwangsa temple are lots of kinds andesitic rocks, which has gone through mechanical and chemical weathering. As the overall observation, the pagoda is serious damages by air pollutants, and the northeast parts show the much advanced state of turning white, while the southeast parts are heavily cracked in the materials. The rocks of brick-shaped pagoda body are in a relatively stable condition of weathering and damage except for the abrasion and cracks of the corners. The rocks of the pagoda roof suffer from more symptoms including multiple peel-offs, exfoliation, cracks forming round lines, and falling off stone pieces. The pagoda roof rocks are dominated by the thriving leafy lichens and mosses, especially, there are higher plants (selaginella involvens, dandelions) taking root actively between the brick stones and content mortar. There are even light gray precipitates like stalactites between the rocks of the body, In particular, the 1st and 2nd floor in the east side and the body parts in the north side are the most serious. Their major minerals are calcite, gypsum and clay minerals. The rocks of the stylobate and the tabernacle in all the four directions are composed mainly of granitic rocks. The materials consisting of the tabernacles show the severe splits and distortion, which causes the structural instability. The stylobate rocks are heavily contaminated by some weeds with the often marks of inorganic contamination by secondary hydroxides. The central part of the east stylobate has been sinking, while that of the 1st floor west stylobate is protruded nesting a line of cracks. Accordingly, the inside of the tabernacle is always humid with the constant introduction of rainwater. The stone lion standing in the southeast and northeast side are alkali granite, while that in the southwest and northwest lithic tuff. Each of the stone lion also coated with various colored lichens, mosses, algae, bacteria and bryophyte. The external materials of the pagoda have deteriorated the functions of the rocks and made the loss, falling off, and biological contamination even worse due to the surface weathering. Thus it's urgent to come up with scientific restoration and conservation measures through clinical tests.

  • PDF

Deterioration Assessment and Structural‐Reinforcement of Stone Lantern of the Four Guardian Kings in Beopjusa Temple, Boeun (보은 법주사 사천왕석등의 비파괴 훼손도 평가 및 구조보강)

  • Choie, Myoungju;Lee, Myeong Seong;Jun, Yu Gun;Lee, Mi Hye;Kim, Yuri;Ha, Jun Kyeong
    • Journal of Conservation Science
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2017
  • The stone lantern of the four guardian kings in the Beopjusa temple at Boeun was mainly made of biotite granodiorite consisting of porphyritic-textured potassium feldspar and included in ilmenite series. A base stone made of alkali granite was buried, after founded its place during an earlier restoration process. Cracking and break out are noticeable on this object. In addition, discoloration, salt crusting, and epiphytes were observed. The lantern was vulnerable in terms of physical and structural stability caused by cracking in the front and back of the light chamber and in the non-horizontal direction. According to the conservational condition of the stone lantern, structural reinforcement was carried out based on calculations, including those on the position, size, and anchor length of the titanium stiffener. Chemical and biological pollutants were washed off without damage to the surface of the stone material. Oxygenated iron pieces were replaced with titanium. Ethyl silicate was applied to the surface of the lantern for consolidation and smooth drainage.

Concentration of metallic elements in surface sediments at a waste disposal site in the Yellow Sea (황해 폐기물 투기해역(서해병) 표층 퇴적물의 금속원소 분포)

  • Koh, Hyuk-Joon;Choi, Young-Chan;Park, Sung-Eun;Cha, Hyung-Kee;Chang, Dae-Soo;Lee, Chung-Il;Yoon, Han-Sam
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.787-799
    • /
    • 2013
  • The aim of this study was to investigate the accumulation of metallic elements and the control effect of marine pollution caused by ocean dumping in the sediments at a waste disposal area in the Yellow Sea. In July 2009, concentrations of organic matter and metallic elements (Al, Fe, As, Cd, Cr, Co, Hg, Ni, Mn, Pb, and Zn) were measured in surface sediments at the site. The ignition loss (IL) in the surface sediments showed a mean value of 15.4%, about 1.5 times higher than the mean value of the sediments in the coastal areas of Korea. The chemical oxygen demand (COD) at some disposal sites exceeded 20 mg $O_2/g{\cdot}dry$, which signifies the initial concentration of marine sediment pollutants in Japan. The disposal sites contain higher concentrations of Cr, Cu and Zn than the sediments of bays and estuaries that might be contaminated. The magnitude of both metal enrichment factors (EF) and adverse biological effects suggest that pollution with Cr and Ni occurred due to the dumping of waste in the study area. In addition, the geoaccumulation index (Igeo) showed that the surface sediments were moderately contaminated. By the mid-2000s, when the amount of waste dumped at this site was the highest, the concentration of metallic elements was higher than ever recorded. On the other hand, in 2008-09, the need for environmental management was relatively low compare with the peak. As a result, the quality of marine sediment has been enhanced, considering the effect of waste reduction and natural dilution in the disposal area.