• 제목/요약/키워드: biological insecticide

검색결과 127건 처리시간 0.026초

Insecticide Resistance in Increasing Interest

  • Lee, Sung-Eun;Kim, Jang-Eok;Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • 제44권3호
    • /
    • pp.105-112
    • /
    • 2001
  • Insect pests can be controlled through direct application of insecticides. Insect control by residual protectants is relatively inexpensive and has an advantage of destroying all stages of infestations. The efficacy of control is largely determined by the concentration of insecticides to which the pest species is exposed. A reduction in the period of control in the field afforded by a specific level of a protectant indicates that resistance has developed. An increase in the level of protectant is required to maintain control, and the efficacy of currently used insecticides has been severely reduced by insecticide resistance in pest species. Development of resistance to particular insecticide varies with species because insecticide resistance is often correlated with increased levels of certain enzymes, which are cytochrome P450-dependent monooxygenases, glutathione S-transferases and esterases. Some sections of insecticide molecules can be modified by one or more of these primary enzymes. A reduction in the sensitivity of the action site of a xenobiotic also constitutes a mechanism of resistance. Acetylcholinesterase is a major target site for insecticide action, as are axonal sodium ion channels and ${\gamma}$-aminobutyric acid receptors. Development of reduced sensitivity of these target sites to insecticides usually occurs. This review not only may contribute to a better understanding of insecticide resistance, but also illustrates the gaps still present for a full biochemical understanding of the resistance.

  • PDF

살충제 Imidacloprid 잔류물의 신속한 측정을 위한 생물반응 및 계측제어 시스템 개발 (Development of a Biological Reaction and Measurement Control System for Rapid Detection of the Insecticide Imidacloprid Residues)

  • 임종근;조한근
    • Journal of Biosystems Engineering
    • /
    • 제30권2호
    • /
    • pp.114-120
    • /
    • 2005
  • In this study, a biological reaction and measurement control system was developed to rapidly measure the insecticide imidacloprid residues in agricultural products. The biological reaction part of the system was designed to include micro-pumps and valves for fluid transport, and a polystyrene covet as a reaction chamber. The measurement control part of the system consisted of a photodiode with a light-emitting diode for optical density measurement, and a control microcomputer to implement assay. Signal output was read as the rate of change in optical density at 645 nm. The sensitivity of the system was 2.2 ng/mL ($IC_50$). The system could execute a measurement cycle in about 19 minutes. Research will be continued to develop an automatic sampler fur imidacloprid residues from agricultural products.

The Effects of Controlling the Aphis gossypii Glover (Homoptera, Aphididae) on Cucumber of Entomopahtogenic Fungus, Beauveria bassiana

  • Kang, Min-Ah;Youn, Young-Nam
    • 농업과학연구
    • /
    • 제35권2호
    • /
    • pp.127-136
    • /
    • 2008
  • 곤충병원성 곰팡이인 Beauveria bassiana는 미생물 살충제로서 다양한 해충들을 방제하는데 사용해오고 있다. 최근에 B. bassiana TBI-1균주가 두점박이응애, 온실가루이에 살충효과가 있는 것으로 보고되었다. 생물학적 방제 인자인 B. bassiana TBI-1를 목화진딧물에도 어느 정도의 살충활성을 나타내었다. B. bassiana TBI-1 균주를 처리한 후 일주일 동안 평균 진딧물의 증가율은 0.21로 나타났으나 처리하지 않은 대조군에서는 0.24의 증가율로 약간 높게 나타나 보였다. 이러한 결과에서 백강균의 처리구에서 진딧물의 평가 증가율이 0.03 낮게 나타나는 것을 알 수 있었다. 또한 오이 잎에 B. bassiana TBI-1 균주에 의하여 붉은빛 곰팡이의 형태로 죽은 진딧물의 죽은 흔적을 육안으로 확인할 수 있었다. 적정농도로 B. bassiana TBI-1을 처리하면 목화진딧물의 개체군 증가율을 현저히 감소시킴으로 효과적으로 진딧물을 방제할 수 있을 것이다.

  • PDF

Effects of Organophosphate Insecticide Application to the Conditioned Taste Aversion of Red-winged Blackbirds, Agelaius phoeniceus, Icteridae

  • Hansoo Lee
    • Animal cells and systems
    • /
    • 제3권1호
    • /
    • pp.41-46
    • /
    • 1999
  • An experiment was conducted among free-ranging red-winned blackbirds (Agelaius phoeniceus) that acquired illness-induced conditioned taste aversion (CTA) by consuming insect prey tainted with a dose of parathion up to 2.0 mg/kg consumer body weight. Birds quickly acquired CTA and avoided all four insect prey during a lengthy posttest without parathion. This experiment proved that organophosphate insecticide application in the field might decrease the food consumption of wild birds and may also affect the reproductive success of breeding birds. Thus, CTA acquired accidentally after eating insecticide contaminated insect prey appears to be one of the reasons for the decreasing number of breeding songbirds in North America.

  • PDF

O1factory and Sexual Attractiveness of Western Mosquitofish (Gambusia affinis) Exposed to the Commonly Used Insecticide Endosulfan

  • Park, Daesik;Propper, Catherine R.;Park, Shi-Ryong
    • Animal cells and systems
    • /
    • 제6권2호
    • /
    • pp.153-157
    • /
    • 2002
  • To know whether a short-term exposure to a commonly used insecticide induces subtle negative toxic effects, female western mosquitofish, Gam-busia affinis, were exposed to 0.1, 0.5, and 1 pub endosulfan for one week and subsequently examined for their olfactory and sexual attractiveness to conspecific males. A short-term exposure to endosulfan did not impair the physical conditions investigated in this study nor did it disrupt olfactory attractiveness of female mosquitofish. However, 1 ppb endosulfan significantly reduced sexual attractiveness of exposed females. Test males showed significantly less copulation attempts with the exposed females. Our results suggest that in the field, a short term exposure of endosulfan may disrupt mating processes in non-targeted aquatic organisms.

Protective effect of Jageum-Jung on chlorpyrifos-induced acute toxicity in ICR mice

  • Yim, Nam-Hui;Ma, Jin Yeul
    • Journal of Applied Biological Chemistry
    • /
    • 제61권4호
    • /
    • pp.411-416
    • /
    • 2018
  • Chlorpyrifos (CPF) is one of the most heavily used organophosphate pesticides and is useful as an insecticide drug. However, CPF also causes toxic effects in nontarget organisms, including humans and animals. Jageum-Jung (JGJ) is a traditional oriental medicine, composed of five specific herbs with antioxidant and hepatoprotective properties, used for detoxification. In the present study, highly concentrated CPF was orally administrated to male Institute of Cancer Research mice to produce acute toxicity, and the protective effects of JGJ administration were investigated through statistical analysis of changes in body and organ weights and serum biochemical parameters. JGJ caused body and organ weights to recover and reduced the levels of serum biochemical parameters indicative of liver damage, such as glutamic oxalate transaminase, glutamic pyruvate transaminase, alkaline phosphatase, lactic dehydrogenase, urea, glucose, total cholesterol, and triglyceride, that had been increased by CPF treatment. Our results demonstrated that JGJ ameliorates the effects of acute chlorpyrifos-induced toxicity. Therefore, JGJ has the potential to be used as a traditional medicine to alleviate insecticide toxicity.

Different tolerance of zooplankton communities to insecticide application depending on the species composition

  • Sakamoto, Masaki;Tanaka, Yoshinari
    • Journal of Ecology and Environment
    • /
    • 제36권2호
    • /
    • pp.141-150
    • /
    • 2013
  • Natural zooplankton communities are composed of many different species at different trophic levels in the aquatic food web. Several researchers have reported that in mesocosm/enclosure experiments, larger cladocerans tend to be more sensitive to carbamate insecticides than smaller ones (Daphnia > Moina, Diaphanosoma > Bosmina). In contrast, results from individual-level laboratory tests have suggested that large cladoceran species are more tolerant than small species. To clarify this inconsistency, we conducted a microcosm experiment using model zooplankton communities with different species compositions, where animals were exposed to lethal (near to the 24 h LC50, concentration estimated to kill 50% of individuals within 24-h for the small cladoceran Bosmina) and lower, sublethal concentrations of carbaryl. In the experiment, population densities of the small cladocerans (Bosmina and Bosminopsis) decreased subsequent to the applications of chemical, but no impacts were observed on the large cladoceran Daphnia. Our results supported the reports of previous individual level toxicity tests, and indicated that the sensitivity of zooplankton to the insecticide was unchanged by biological interactions but the response of population can be modified by compensation of population through hatching from resting eggs and/or the persistence of insecticide in the systems.

Construction of a Baculovirus Hyphantria cunea NPV Insecticide Containing the Insecticidal Protein Gene of Bacillus thuringiensis subsp. kurstaki HD1

  • Lee, Hyung-Hoan;Moon, Eui-Sik;Lee, Sung-Tae;Hwang, Sung-Hei;Cha, Soung-Chul;Yoo, Kwan-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권6호
    • /
    • pp.685-691
    • /
    • 1998
  • Baculovirus Hyphantrin. cunea nuclear polyhedrosis virus (HcNPV) insecticide containing the insecticidal protein (ICP) gene from Bacillus thuringiensis subsp. kurstaki HD1 was constructed using a lacZ-HcNPV system. The ICP ($\delta$-endotoxin) gene was placed under the control of the polyhedrin gene promoter of the HcNPV. A polyhedrin-negative virus was derived and named ICP-HcNPV insecticide. Then, the insertion of the ICP gene in the ICP-HcNPV genome was confirmed by Southern hybridization analysis. Polyacrylamide gel electrophoresis (PAGE) analysis of the Spodoptera frugiperda cell extracts infected with the ICP-HcNPV showed that the ICP was expressed in the insect cells as 130 kDa at 5 days post-infection. The ICP produced in the cells was present in aggregates. When extracts from the cells infected with the ICP-HcNPV were fed to 20 Bombyx mori larvae, the following mortality rate was seen; 8 larvae at 1 h, 10 larvae at 3 h, and 20 larvae at 12 h. These data indicate that the B. thuringiensis ICP gene was expressed by the baculovirus insecticide in insect cells and there was a high insecticidal activity. The biological activities of the recombinant virus ICP-HcNPV were assessed in conventional bioassay tests by feeding virus particles and ICP to the insect larvae. The initial baculovirus insecticide ICP-HcNPV was developed in our laboratory and the significance of the genetically engineered virus insecticides is discussed.

  • PDF

배추좀나방에 대한 프루텔고치벌과 미생물농약의 통합생물방제 (An Integrated Biological Control Using an Endoparasitoid Wasp (Cotesia plutellae) and a Microbial Insecticide (Bacillus thuringiensis) against the Diamondback Moth, Plutella xylostella)

  • 김규순;김현;박영욱;김길하;김용균
    • 한국응용곤충학회지
    • /
    • 제52권1호
    • /
    • pp.35-43
    • /
    • 2013
  • 국내 배추좀나방(Plutella xylostella) 집단은 피레스로이드 농약에 대해서 저항성을 보이며, 이는 이 살충제의 작용점인 소듐이온채널 유전자의 돌연변이에 기인된다. 더욱이 배추좀나방은 대부분 상용화된 살충제에 대해서 저항성을 발달시킬 수 있다. 본 연구는 배추좀나방을 효과적으로 방제하기 위해 내부기생성 천적인 프루텔고치벌(Cotesia plutellae)과 미생물농약인 Bacillus thuringiensis의 혼합처리 기술을 개발하기 위해 수행되었다. 프루텔고치벌이 감수성과 저항성 배추좀나방에 대한 기생 선호성에 차등이 있는 지 조사하기 위해 다섯 개 서로 다른 집단에 대해서 살충제 감수성과 프루텔고치벌 기생성 차이를 비교하였다. 이들 배추좀나방 집단들은 피레스로이드, 유기인계, 네오니코틴계 및 곤충성장조절제를 포함하는 세 종류의 상용 살충제에 대한 약제 감수성에서 뚜렷한 차이를 보였다. 그러나 이들 집단들은 프루텔고치벌에 의한 기생률에서는 차이를 보이지 않았다. 더욱이 기생된 배추좀나방은 B. thuringiensis에 대해서 감수성이 증가되었다. 프루텔고치벌이 갖는 면역억제인자 가운데 바이러스 유래 ankyrin 유전자(vankyrin)를 비기생된 배추좀나방에 발현시켰다. Vankyrin의 발현은 배추좀나방 3령충의 B. thuringiensis에 대한 감수성을 현격하게 증가시켰다. 즉, 프루텔고치벌에 의해 야기된 면역저하가 B. thuringiensis의 살충력을 증가시켰다. 이러한 결과들은 프루텔고치벌과 미생물농약인 B. thuringiensis의 혼합처리가 살충제 저항성 배추좀나방을 효과적으로 방제할 수 있다고 제시하고 있다.