• Title/Summary/Keyword: biological components

Search Result 1,448, Processing Time 0.031 seconds

Development of a Spirulina Extract/Alginate-Imbedded PCL Nanofibrous Cosmetic Patch

  • Byeon, Seon Yeong;Cho, Myung Kwon;Shim, Kyou Hee;Kim, Hye Jin;Song, Hyeon Gi;Shin, Hwa Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1657-1663
    • /
    • 2017
  • Cosmetic patches have recently been developed as skin products for personal care owing to rapid advances in the technology of delivery of active ingredients, moisture, and adhesiveness to skin. Alginate and Spirulina are typical marine resources used in cosmetic products. This research involved the development of a Spirulina extract-impregnated alginate nanofiber cosmetic patch supported by a polycaprolactone (PCL) nanofiber cover (Spi/Alg-PCL NF patch). In addition to the ability of alginate to affect moisture and adhesiveness to skin, the impregnation of Spirulina extract strengthened those abilities as well as its own bioactive effectiveness. All fabrication processing steps were undertaken in aqueous solution. The three components (alginate, Spirulina extract, and PCL) had no detected cytotoxicity in human keratinocyte cell-based examination. In addition, wetting the pre-dried patch on the skin resulted in the Spirulina extract being released within 30 min. The results indicate the excellence of the Spi/Alg-PCL NF patch as a skin-care cosmetic device.

Extractive fermentation of Monascus purpureus promotes the production of oxidized congeners of the pigment azaphilone

  • Lim, Yoon Ji;Lee, Doh Won;Park, Si-Hyung;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.327-334
    • /
    • 2018
  • Monascus is a source of food colorant with high productivity of the pigment azaphilone. Monascus azaphilone (MAz) is biosynthesized through a single non-reducing polyketide pathway, the major components of which are ankaflavin (1), monascin (2), rubropunctatin (3) and monascorubrin (4); valuable biological activities have been reported for these compounds. Thus, various culture conditions were explored to reduce the cost of culture ingredients, enhance productivity and modulate compound composition. In the present study, we examined an extractive fermentation (EF) method with Diaion HP-20 resin (HP20) in direct comparison to a previously explored method involving Triton X-100 (TX100) to explore the modulated production of the major MAzs. We employed wild-type Monascus purpureus as well as two derivative recombinant strains (${\Delta}mppG$ and ${\Delta}mppE$) that are known to have differential MAz profiles as that of the wild-type strain. The HP20 resin was capable of modulating the MAz profile in favor of orange MAzs 3 and 4, oxidized congeners in this class, as was TX100-a phenomenon not previously observed for TX100 EF with Monascus anka. These finding substantiate that HP20 can be employed for the selective production of oxidized MAz and for diversifying the culture conditions used for Az production.

Suppression of Migration and Invasion by Alnus hirsuta in Human Hepatocellular Carcinoma Cells

  • Bo-Ram Kim;Su Hui Seong;Tae-Su Kim;Jin-Ho Kim;Chan Seo;Ha-Nul Lee;Sua Im;Jung Eun Kim;Ji Min Jung;Jung Up Park;Kyung-Min Choi;Jin-Woo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.3
    • /
    • pp.207-218
    • /
    • 2023
  • Hepatocellular carcinoma (HCC) has a poor prognosis and high metastasis and recurrence rates. Although extracts of Alnus hirsuta (Turcz. ex Spach) Rupr. (AH) have been demonstrated to possess potential anti-inflammatory and anti-cancer activities, the underlying mechanism of AH in HCC treatment remains to be elucidated. We investigated the effects and potential mechanisms of AH on migration and invasion of Hep3B cells. Within the non-cytotoxic concentration range, AH significantly inhibited motility and invasiveness of Hep3B cells in a concentration-dependent manner. Inhibitory effects of AH on cell invasiveness are associated with tightening of tight junctions (TJs), as demonstrated by an increase in transepithelial electrical resistance. Immunoblotting indicated that AH decreased levels of claudins, which form major components of TJs and play key roles in the control and selectivity of paracellular transport. Furthermore, AH inhibited the expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9 and simultaneously increased the levels of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. These effects were related to inactivation of the phosphoinositide 3-kinase (PI3K)/AKT pathway in Hep3B cells. Therefore, AH inhibits migration and invasion of Hep3B cells by inhibiting the activity of MMPs and tightening TJs through suppression of claudin expression, possibly by suppressing the PI3K/AKT signaling pathway.

Volatile Components in the Soy Sauce Manufactured by Bacillus Species and Fused Yeast

  • Kim, Haeng-Ja;Lee, Eun-Ju;Shin, Ok-Sun;Ji, Won-Dae;Choi, Myeong-Rak;Kim, Jong-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.194-201
    • /
    • 1996
  • To develop a method appropriate for mass production in a factory, we manufactured soy sauce with Bacillus species SSA3-2M1 and fused ST723-F31 at $30^{\circ}C$ with aeration of 1/3 vvm for 40 days. The flavor components extracted from the manufactured soy sauce were fractionated to neutral, acidic, basic and phenolic fraction and identified by GC-mass. Among the 60 kinds of identified flavor components, 16 and 23 components were detected in traditional Korean soy sauce and soybean paste, respectively. There were three peak regions that smelled like soy sauce with the GC sniffing test of flavor components and 2, 6-dimethyl pyrazine, benzaldehyde, 2-methoxy phenol, phenol and benzeneethanol which were identified as character impact compounds of traditional Korean soy sauce and soybean paste were identified in the region that smelled like soy sauce. It is therefore considered possible to achieve mass production of soy sauce with standard quality by Bacillus species SSA3-2M1 and fused ST723-F31 in the factory.

  • PDF

Comparison of Biochemical Components among Different Fodders-treated Antlers (각종 사료군의 투여에 따른 녹용 성분의 비교)

  • Ha, Young-Wan;Jeon, Byong-T.;Moon, Sang-H.;Kim, Yeong-Shik
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.1 s.132
    • /
    • pp.40-44
    • /
    • 2003
  • Antler has been used as one of the important traditional oriental medicines for many years. It contains many biochemical components including lipids, peptides, carbohydrates, and inorganic substances. The various biological activities of antler are being considered owing to such biochemical components. The purpose of this research is to compare the biochemical components of antlers after treatment of three different kinds of fodder. They are mulberry (group A), Lycii Fructus (group B) and the complex of herbs (group C). The chemical composition of each antler was determined in three sections (top, middle, and bottom) and compared with those of the control. The contents of sialic acid, uronic acid and glycosaminoglycans increased in the top antlers of the group B. Total lipids content increased in the top antlers of all groups (A, B, and C). The concentration of inorganic ions (Ca, Mg, and P) decreased in all groups. Fattyacid composition was also analyzed by GC-MS and expressed as percentage of total fatty acid concentration. The content of palmitic acid decreased in all groups. The content of 2-hydrox-yhexadecanoic acid, which has not been reported in aster, increased in the top antlers of all groups. These results suggest that the treatment of special fodder may affect the composition of the biochemical components of antlers.

Profiling of Volatile Components Using Gas Chromatography-Mass Spectrometry in Commercial Pine Needle (Pinus densiflora S. and Z.) Powder

  • Kim, Joo-Shin;Chung, Hau-Yin
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.45-54
    • /
    • 2011
  • Volatile components in commercial pine needle (Pinus densiflora S. and Z.) powder were extracted using simultaneous steam distillation and a solvent extraction (SDE) apparatus, and were analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 230 compounds divided into 13 groups were identified, which included alcohols (42), ketones (39), aldehydes (32), terpenes (30), alkenes (17), esters (14), furans (14), benzenes (10), alkanes (8), napthalenes (7), acids (6), miscellaneous compounds (6), and phenols (5). Among the 230 compounds identified, 96 compounds were positively confirmed and quantified, and the rest of the compounds were tentatively identified. The major volatile components identified at relatively high levels were dodecanoic acid, hexadecanoic acid, hexanal, benzaldehyde, (Z)-3-hexen-1-ol, 1-penten-3-one, limonene, and $\beta$-caryophyllene oxide. Among the groups, terpenes accounted for 60.18% of the total concentration of all the volatile components. Some volatile components might account for the unique aroma and the biological activity of the sample.

Biological Activity of Flavor Components Extracted from Elsholtzia ciliata and Elsholtzia splendens (향유와 꽃향유 향기성분의 생리활성 검정)

  • Jeong Jae-Hoon;Sohn Hyung-Ok;Shin Han-Jae;Hyun Hak-Chul;Lee Dong-Wook;Lim Heung-Bin
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.19-30
    • /
    • 2005
  • This study was to evaluate the biological activity of flavor components extracted from E. ciliata and E. splendens in order to survey the possibility applicable to tobacco and food industry. Flavor components were extracted with dividing into three parts; essential oil, absolute, oleoresin. In the nonenzymatic lipid peroxidation system, the inhibition rate($\%$) of essential oil were $67.3\;\pm\;20.7\%,\;58.1\;\pm\;19.3\%$ at the concentration of 50 ${\mu}g/mL$ of E. ciliata and E. splendens, respectively. The inhibition rate($\%$) of the oleoresin in E. ciliata was higher than one in E. splendens. In the enzymatic lipid peroxidation system, the inhibition rate($\%$) of essential oil and oleoresin was$14.28\;\pm\;2.38\%,\;and\;65.93\;\pm\;0.01\%,\;and\;was\;22.58\;\pm\;2.84\%\;and\;40.73\;pm\;6.04\%$. The oleoresin of two species were showed above $90\%$ of the inhibition rate($90\%$) against autooxidative lipid peroxidation system. $EC_{50}$ values in neutral red uptake assays 24 h of exposure times were $23.3\;{\mu}g/mL,\;341.0\;{\mu}g/mL\;and\;17.2\;{\mu}g/mL$ in essential oil, absolute and oleoresin from E. ciliata respectively, and were $46.4\;{\mu}g/mL,\;681.7\;{\mu}g/mL\;17.6\;{\mu}g/mL$ in three extractions of E. splendens. Oleoresin of two species showed high rate in the cytotoxic effect by neutral red uptake assay. Absolute and oleoresin did not show antibiotic and mutagenic activity. On the contrary, essential oil with over 500 ug/plate showed antibiotic and mutagenic activity in Ames test. Essential oil and oleoresin have a prolongating effect the ciliostasis of rat trachea. This results indicate that flavor components extracted from E. ciliata and E. splendens can be considered to be toxicological safe and to be the possibility applicable the cigarette, food and drug industry as a flavor for expectoration.

Optimization of Culture Medium for Lactosucrose ($^4G-{\beta}$-D-Galactosylsucrose) Production by Sterigmatomyces elviae Mutant Using Statistical Analysis

  • Lee, Jong-Ho;Lim, Jung-Soo;Song, Yoon-Seok;Kang, Seong-Woo;Prak, Chul-Hwan;Kim, Seung-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1996-2004
    • /
    • 2007
  • In this study, the optimization of culture medium using a Sterigmatomyces elviae mutant was investigated using statistical analysis to increase the cell mass and lactosucrose ($^4G-{\beta}$-D-galactosylsucrose) production. In basal medium, the cell mass and lactosucrose production were 4.12 g/l and 140.91 g/l, respectively. However, because of the low cell mass and lactosucrose production, optimization of culture medium was carried out to increase the cell mass and lactosucrose production. Culture media were optimized by the S. elviae mutant using analysis of variance (ANOVA) and response surface methodology (RSM). Central composite designs using RSM were utilized in this investigation. Quadratic models were obtained for cell mass and lactosucrose production. In the case of cell mass, optimal components of the medium were as follows: sucrose 1.13%, yeast extract 0.99%, bactopeptone 2.96%, and ammonium sulfate 0.40%. The predicted maximum value of cell mass was about 5.20 g/l and its experimental value was 5.08 g/l. In the case of lactosucrose production, optimal components of the medium were as follows: sucrose 0.96%, yeast extract 1.2%, bactopeptone 3.0%, and ammonium sulfate 0.48%. Then, the predicted maximum value of lactosucrose production was about 194.12 g/l and the corresponding experimental value was about 183.78 g/l. Therefore, by culturing using predicted conditions, the real cell mass and lactosucrose production increased to 23.3% and 30.42%, respectively.

The Effects of Lentinula edodes and Aquilariae agallocha Extracts Combination on the Repair of UVA-Damaged DNA and DNCB-Induced Allergic Dermatitis (자외선A로 손상된 DNA의 회복과 DNCB에 의한 알러지성 접촉피부염에 대한 표고버섯과 침향 추출 혼합물의 효과)

  • Kim, Min Seob;Hwang, Hyun Ik;Lee, Yu Ri;Kim, Ho Won;Park, Jong Kun
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.5
    • /
    • pp.759-765
    • /
    • 2015
  • The effects of extracts from Lentinula edodes (L. edodes) and Aquilariae agallocha (A. agallocha) on the DNA damage response in ultraviolet A (UVA)-exposed HaCaT cells and on the allergic contact dermatitis caused by 2,4-dinitro-chlorobezene (DNCB) were investigated. When UVA-exposed cells were incubated for 24 hours in medium containing L. edodes or A. agallocha extract, the level of 8-OHdG and CPD decreased in a concentration-dependent manner. The combined treatment with both extracts potentiated the decrease in UVA-induced 8-OHdG and CPD levels as compared with those following treatment with a single extract. In addition, the two extracts showed preventive effects against the UVA-induced reduction in collagen levels. Furthermore, the blood levels of IgE, IL-6, and histamine decreased more significantly upon combined treatment with L. edodes and A. agallocha extracts as compared with those following treatment with single extracts in DNCB-induced allergic contact dermatitis in the ICR mouse. The results of the present study suggest that the components with in the extracts of L. edodes and A. agallocha can help to prevent of UVA-induced genomic instability via a decrease in DNA damage, and to decrease the DNCB-induced allergic dermatitis via modulation of relevant proteins including IgE and IL-6. Further study is needed to clarify the purified components related to the preventative effects of the two extracts against UVA- or DNCB-induced genomic damage.

Simulation of Soil Hydrological Components in Chuncheon over 30 years Using E-DiGOR Model

  • Aydin, Mehmet;Jung, Yeong-Sang;Yang, Jae-E.;Lee, Hyun-Il;Kim, Kyung-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.484-491
    • /
    • 2012
  • The hydrological components of a sandy loam soil of nearly level in Chuncheon over 30 years were computed using the E-DiGOR model. Daily simulations were carried out for each year during the period of 1980 to 2009 using standard climate data. Reference evapotranspiration and potential soil evaporation based on Penman-Montheith model were higher during May to August because of the higher atmospheric evaporative demand. Actual soil evaporation was mainly found to be a function of the amount and timing of rainfall, and presumably soil wetness in addition to atmospheric demand. Drainage was affected by rainfall and increased with a higher amount of precipitation and soil water content. Excess drainage occurred throughout rainy months (from July to September), with a peak in July. Therefore, leaching may be a serious problem in the soils all through these months. The 30-year average annual reference evapotranspiration and potential soil evaporation were 951.5 mm and 714.2 mm, respectively. The actual evaporation from bare soil varied between 396.9-528.4 mm and showed comparatively lesser inter-annual variations than drainage. Annual drainage rates below 120 cm soil depth ranged from 477.8 to 1565.9 mm. The long-term mean annual drainage-loss was approximately two times higher than actual soil evaporation.