• 제목/요약/키워드: biological clock

검색결과 64건 처리시간 0.03초

Posttranslational and epigenetic regulation of the CLOCK/BMAL1 complex in the mammalian

  • Lee, Yool;Kim, Kyung-Jin
    • Animal cells and systems
    • /
    • 제16권1호
    • /
    • pp.1-10
    • /
    • 2012
  • Most living organisms synchronize their physiological and behavioral activities with the daily changes in the environment using intrinsic time-keeping systems called circadian clocks. In mammals, the key molecular features of the internal clock are transcription- and translational-based negative feedback loops, in which clock-specific transcription factors activate the periodic expression of their own repressors, thereby generating the circadian rhythms. CLOCK and BMAL1, the basic helix-loop-helix (bHLH)/PAS transcription factors, constitute the positive limb of the molecular clock oscillator. Recent investigations have shown that various levels of posttranslational regulation work in concert with CLOCK/BMAL1 in mediating circadian and cellular stimuli to control and reset the circadian rhythmicity. Here we review how the CLOCK and BMAL1 activities are regulated by intracellular distribution, posttranslational modification, and the recruitment of various epigenetic regulators in response to circadian and cellular signaling pathways.

Identification of a PAS Domain-containing Protein in a Mammalian Hibernator, Murina leucogaster

  • Cho, Sang-Gil;Kim, Dong-Yong;Eom, Ki-Hyuk;Bae, Ki-Ho
    • Animal cells and systems
    • /
    • 제13권2호
    • /
    • pp.119-125
    • /
    • 2009
  • Mammalian hibernation is a type of natural adaptation that allows organisms to avoid harsh environment and to increase the possibility of survival. To investigate the molecular link between circadian and hibernating rhythms in the greater tube-nosed bats, Murina leucogaster, we set out to identify circadian genes that are expressed in bats, with specific focus on the PAS domain by using PCR-based screens. We could isolate a eDNA clone, designated as LPAS1, that encodes a protein of 521 amino acid residues. LPAS1 is closely related with CLOCK family with the highest homology to human CLOCK. Based on RT-PCR analyses, LPAS1 transcripts are ubiquitously present in tissues from both summer active and winter dormant periods. Given that LPAS1 is a member of the bHLH-PAS protein superfamily but lacks polyglutamine transactivation domains, it is likely to function as a repressor for endogenous CLOCK to hinder its roles in promoting transcription. Our result will open a new avenue to further examine the functional interconnection between the circadian clock and the circannual clock such as mammalian hibernation.

Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal

  • Putker, Marrit;O'Neill, John Stuart
    • Molecules and Cells
    • /
    • 제39권1호
    • /
    • pp.6-19
    • /
    • 2016
  • Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redoxsensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian timekeeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological timekeeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.

조현병에서 나타나는 후성유전학적 나이 가속도 감속 (Slowing of the Epigenetic Clock in Schizophrenia)

  • 정연오;김진영;카르띠케얀 비자야쿠말;조광원
    • 생명과학회지
    • /
    • 제33권9호
    • /
    • pp.730-735
    • /
    • 2023
  • 지난 10년 동안 인공지능의 도움으로 노화를 정량화하기 위한 수많은 연구가 수행되었다. DNA 메틸화 데이터를 사용하여 다양한 모델이 개발되었으며 흔히 후성유전학적 시계라고 불린다. 후성유전학적 나이 가속화는 일반적으로 질병 상태와도 주로 연관이 있어 보인다. 조현병은 가속 노화 가설과 관련있는 정신질병으로 심각한 정신적, 신체적 스트레스를 동반한다. 다른 심리 질환과 비교했을 때 이 질병은 젊은 사람들에서 높은 사망률과 질병률을 유발한다. 과거 연구에서는 이 질병이 가속 노화 가설과 연관있다고 알려져 있었다. 이번 연구에서는 조현병 환자의 후성유전학적 나이 가속도 변화를 통해 질병에 대한 후성유전학적 통찰을 얻고자 하였다. 후성유전학적 나이 가속화를 측정하기 위해 두 가지 다른 DNA 메틸화 시계 모델을 사용했으며 이는 범조직 모델인 Horvath clock과 Epi clock을 사용하였다. 우리는 Horvath clock과 Epi clock이 모두 호환되는 450k 어레이 데이터를 사용하였다. 그 결과, Epi clock을 사용했을 때 환자샘플에서 후성유전학적 나이 가속화가 더 느리다는 것을 발견했다. Epi clock이 질병으로 인한 DNA 메틸화 변화를 잘 감지해낼 수 있음을 알아내었다. 또한 Epi clock에서 대조군과 환자군에서 차등적으로 메틸화된 CpG 부위를 분석하고 경로 농축 분석을 수행한 결과, 대부분의 CpG가 신경 세포 과정에 관여한다는 사실을 발견했다.

체내 시계 유전자 PER1과 PER2의 종양억제자 기능 (Circadian Clock Genes, PER1 and PER2, as Tumor Suppressors)

  • 손범석;도현희;김은기;윤부현;김완연
    • 생명과학회지
    • /
    • 제27권10호
    • /
    • pp.1225-1231
    • /
    • 2017
  • 암을 포함한 다양한 인간의 질병 발생이 circadian clock 유전자의 변형된 발현 양상과 깊은 연관관계를 나타내고 있다. 세포 주기와 세포 성장은 circadian rhythm과 연결되어 있으며, 이를 조절하는 clock 유전자의 비정상적인 발현은 결국 종양 발생과 암의 발달을 유발하게 된다. Circadian clock에 관한 분자적 기전은 다수의 clock activator와 clock repressor의 통합적인 조절에 따른 전사 및 번역이 포함된 음성피드백 고리로 구성되어 있다. 이러한 circadian rhythm의 자동조절 기전에 의해 전체 유전체의 약 10~15%가 전사 수준에서 영향받는 것으로 나타났다. 많은 clock 유전자들 중, Period 1 (Per1)과 Period 2 (Per2)는 clock repressor 유전자로 정상적인 생리적 리듬을 조절하는 것에 기여한다. PER1과 PER2는 cyclin, CDK, CKI를 포함하는 세포 주기 조절자의 발현에 관여함이 밝혀졌으며, 다양한 암에서 PER1과 PER2의 발현 감소가 보고되었다. 따라서, 본 논문에서는 PER1과 PER2의 circadian rhythm에서의 분자적 기능과 종양 발생과 관련된 PER1과 PER2의 하위 표적인자에 대해 살펴보고, 암 치료를 위한 새로운 치료 표적과 암의 예후를 예측하기 위한 분자 지표로써의 PER1과 PER2의 가능성에 대해 서술하고자 한다.

후성유전학 시계를 통해 감지될 수 있는 양극성 장애의 메틸화 변화 (Methylation Changes in Bipolar Disorder that can be detected through The Epigenetic Clock)

  • 정연오;조광원
    • 통합자연과학논문집
    • /
    • 제16권3호
    • /
    • pp.75-80
    • /
    • 2023
  • Bipolar disorder is a mental illness characterized by extreme mood and behavioral swings, such as highs of euphoria and lows of depression. It is a socially significant disorder in which people with the disorder experience intense mood swings and, for those with severe bipolar disorder, it is even difficult leading a normal life. High stress levels in people with mental illness can lead to neuroendocrine disruption, and it is strongly linked to aging. When the neuroendocrine system becomes vulnerable to these mental illnesses and stress, it is likely to accelerate aging. And it's the epigenetic clock that can measure the extent of this accelerated aging. The Epi clock, a pan tissue clock, measures aging through DNA methylation, and the degree of methylation is modified and changed by environmental conditions in the body. Therefore we wanted to check the changes in the epigenetic age of the patients with bipolar disorder. While we found no significant differences in epigenetic age, we did confirm the possibility that people with bipolar disorder have different methylation than normal people. We also found that the EPIC array data fit better on the Epi clock than on the Horvath clock with age-accelerated data from normal people.

리듬과 생체시계 (Rhythms and Biological Clock)

  • 최돈찬
    • 한국발생생물학회지:발생과생식
    • /
    • 제7권1호
    • /
    • pp.1-7
    • /
    • 2003
  • 사람을 비롯한 대부분의 동물들은 주변 환경의 영향을 받아 주기적인 생활을 영위하고 있다. 지구의 자전 및 공전으로 그리고 국소적으로 발생되는 주기적인 변화는 생명체의 행동으로 뚜렷하게 표출된다. 이러한 환경의 주기적인 변화는 오랜 기간의 진화과정을 통하여 생명체 내의 유전자로 각인되었으며, 이 유전자들은 발생 과정을 포함하는 성장 과정에서 리듬으로 발현된다. 환경의 변화는 결국 유전자로 정착하여 생체 시계로서 작용하며, 시상하부의 시신경교차상핵(suprachiasmatic nucleus, SCN)이 유력한 해부학적 위치이다. 따라서 생체 시계는 지구상에 살고 있는 생명체의 각종 리듬을 지배하여, 출생 및 사망, 수명, 행동, 생리, 세포 분열, 생화학적 반응 등등에 영향을 미친다. 리듬은 서서히 변화하는 환경의 변화에 맞도록 재조정된다. 생체 시계는 규칙적인 환경 변화를 예측하고 이에 미리 대비하게 하는 장점을 지니고 있다.

  • PDF

Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors

  • Ri, Hwajung;Lee, Jongbin;Sonn, Jun Young;Yoo, Eunseok;Lim, Chunghun;Choe, Joonho
    • Molecules and Cells
    • /
    • 제42권4호
    • /
    • pp.301-312
    • /
    • 2019
  • Post-transcriptional regulation underlies the circadian control of gene expression and animal behaviors. However, the role of mRNA surveillance via the nonsense-mediated mRNA decay (NMD) pathway in circadian rhythms remains elusive. Here, we report that Drosophila NMD pathway acts in a subset of circadian pacemaker neurons to maintain robust 24 h rhythms of free-running locomotor activity. RNA interference-mediated depletion of key NMD factors in timeless-expressing clock cells decreased the amplitude of circadian locomotor behaviors. Transgenic manipulation of the NMD pathway in clock neurons expressing a neuropeptide PIGMENT-DISPERSING FACTOR (PDF) was sufficient to dampen or lengthen free-running locomotor rhythms. Confocal imaging of a transgenic NMD reporter revealed that arrhythmic Clock mutants exhibited stronger NMD activity in PDF-expressing neurons than wild-type. We further found that hypomorphic mutations in Suppressor with morphogenetic effect on genitalia 5 (Smg5) or Smg6 impaired circadian behaviors. These NMD mutants normally developed PDF-expressing clock neurons and displayed daily oscillations in the transcript levels of core clock genes. By contrast, the loss of Smg5 or Smg6 function affected the relative transcript levels of cAMP response element-binding protein B (CrebB) in an isoform-specific manner. Moreover, the overexpression of a transcriptional repressor form of CrebB rescued free-running locomotor rhythms in Smg5-depleted flies. These data demonstrate that CrebB is a rate-limiting substrate of the genetic NMD pathway important for the behavioral output of circadian clocks in Drosophila.

Rhythmic Gene Expression in Somite Formation and Neural Development

  • Kageyama, Ryoichiro;Niwa, Yasutaka;Shimojo, Hiromi
    • Molecules and Cells
    • /
    • 제27권5호
    • /
    • pp.497-502
    • /
    • 2009
  • In mouse embryos, somite formation occurs every two hours, and this periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 expression oscillates by negative feedback and is cooperatively regulated by Fgf and Notch signaling. Both loss of expression and sustained expression of Hes7 result in severe somite fusion, suggesting that Hes7 oscillation is required for proper somite segmentation. Expression of a related gene, Hes1, also oscillates by negative feedback with a period of about two hours in many cell types such as neural progenitor cells. Hes1 is required for maintenance of neural progenitor cells, but persistent Hes1 expression inhibits proliferation and differentiation of these cells, suggesting that Hes1 oscillation is required for their proper activities. Hes1 oscillation regulates cyclic expression of the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta1, which in turn lead to maintenance of neural progenitor cells by mutual activation of Notch signaling. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) plays an important role in many biological events.

고지방식이에 의한 말초 생체시계 유전자 발현 변화 (High-fat Intake is Associated with Alteration of Peripheral Circadian Clock Gene Expression)

  • 박현기;박재여;이향규
    • Journal of Korean Biological Nursing Science
    • /
    • 제18권4호
    • /
    • pp.305-317
    • /
    • 2016
  • Purpose: Recent studies demonstrated disruption of the circadian clock gene is associated with the development of obesity and metabolic syndrome. Obesity is often caused by the high calorie intake, In addition, the chronic stress tends to contribute to the increased risk for obesity. To evaluate the molecular mechanisms, we examined the expression of circadian clock genes in high fat diet-induced mice models with the chronic stress. Methods: C57BL/6J mice were fed with a 45% or 60% high fat diet for 8 weeks. Daily immobilization stress was applied to mice fed with a 45% high fat for 16 weeks. We compared body weight, food consumption, hormone levels and metabolic variables in blood. mRNA expression levels of metabolic and circadian clock genes in both fat and liver were determined by quantitative RT-PCR. Results: The higher fat content induced more severe hyperglycemia, hyperlipidemia and hyperinsulinemia, and these results correlated with their relevant gene expressions in fat and liver tissues. Chronic stress had only minimal effects on metabolic variables, but it altered the expression patterns of metabolic and circadian clock genes. Conclusion: These results suggest that the fat metabolism regulates the function of the circadian clock genes in peripheral tissues, and stress hormones may contribute to its regulation.