• Title/Summary/Keyword: biological classification

Search Result 579, Processing Time 0.026 seconds

Biological Feature Selection and Disease Gene Identification using New Stepwise Random Forests

  • Hwang, Wook-Yeon
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.64-79
    • /
    • 2017
  • Identifying disease genes from human genome is a critical task in biomedical research. Important biological features to distinguish the disease genes from the non-disease genes have been mainly selected based on traditional feature selection approaches. However, the traditional feature selection approaches unnecessarily consider many unimportant biological features. As a result, although some of the existing classification techniques have been applied to disease gene identification, the prediction performance was not satisfactory. A small set of the most important biological features can enhance the accuracy of disease gene identification, as well as provide potentially useful knowledge for biologists or clinicians, who can further investigate the selected biological features as well as the potential disease genes. In this paper, we propose a new stepwise random forests (SRF) approach for biological feature selection and disease gene identification. The SRF approach consists of two stages. In the first stage, only important biological features are iteratively selected in a forward selection manner based on one-dimensional random forest regression, where the updated residual vector is considered as the current response vector. We can then determine a small set of important biological features. In the second stage, random forests classification with regard to the selected biological features is applied to identify disease genes. Our extensive experiments show that the proposed SRF approach outperforms the existing feature selection and classification techniques in terms of biological feature selection and disease gene identification.

Informative Gene Selection Method in Tumor Classification

  • Lee, Hyosoo;Park, Jong Hoon
    • Genomics & Informatics
    • /
    • v.2 no.1
    • /
    • pp.19-29
    • /
    • 2004
  • Gene expression profiles may offer more information than morphology and provide an alternative to morphology- based tumor classification systems. Informative gene selection is finding gene subsets that are able to discriminate between tumor types, and may have clear biological interpretation. Gene selection is a fundamental issue in gene expression based tumor classification. In this report, techniques for selecting informative genes are illustrated and supervised shaving introduced as a gene selection method in the place of a clustering algorithm. The supervised shaving method showed good performance in gene selection and classification, even though it is a clustering algorithm. Almost selected genes are related to leukemia disease. The expression profiles of 3051 genes were analyzed in 27 acute lymphoblastic leukemia and 11 myeloid leukemia samples. Through these examples, the supervised shaving method has been shown to produce biologically significant genes of more than $94\%$ accuracy of classification. In this report, SVM has also been shown to be a practicable method for gene expression-based classification.

A Case Study on Application of Artificial Intelligence Convergence Education in Elementary Biological Classification Learning (초등 생물분류 학습에서 인공지능 융합교육의 적용 사례 연구)

  • Shin, Won-Sub
    • Journal of Korean Elementary Science Education
    • /
    • v.39 no.2
    • /
    • pp.284-295
    • /
    • 2020
  • The purpose of this study is to explore the possibility of artificial intelligence convergence education (AICE) in elementary biological classification learning. First, the possibility of AICE was analyzed in the field of 2015 revised elementary life science curriculum. The artificial intelligence biological classification (AIBC) education program targeted plant life. The possibility of AICE in the elementary life science curriculum was suggested through the consultation process of three elementary science education experts. The AIBC education program was developed through the review process of elementary education experts. The results of this study are as follows. First, 8(32%) achievement standards were available for AICE in elementary life science. Second, 18(86%) of the 21 items reviewed by the experts for the AIBC education program developed in this study were positively evaluated. Third, in this study, through the analysis of the possibility of AIBC in the elementary life field and the review of the experts, the AIBC education program including teaching and learning models, strategies, and guidance was developed. The results of this study were based on the review of the experts, and as a follow-up study, applied research to elementary students is needed. It is also hoped that various studies on AICE will be conducted not only in the life field but also in science and other fields. Finally, we expect that the results of this study will be applied to bio-classification learning to help students improve classification capabilities and generate classification knowledge.

Environmental Sensor Selection : classification and its applications

  • Rhee, In-Hyoung;Cho, Daechul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.1
    • /
    • pp.87-92
    • /
    • 2004
  • This review focuses on the developed and the being developed environmental sensors in particular biological sensors. As well as discussing the classification and some main principles, presenting current trend of the environmental sensors is given. Two main categories are immunosensors and catalytic sensors. In addition to those. DNA or RNA sensors or protein based sensors are discussed. Some crucial examples of the applications of such sensors are given to show how the sensor technology it used for environmental and biological monitoring, biomarkers of exposure.

  • PDF

Proposal of Korean names for newly updated Collybiopsis species

  • Ji Seon, Kim;Young Woon, Lim
    • Journal of Species Research
    • /
    • v.11 no.4
    • /
    • pp.343-345
    • /
    • 2022
  • The classification system of Collybiopsis has been updated to contain some species of Collybiopsis, Gymnopus sect. Vestipedes, and Marasmiellus. Recently, we conducted the taxonomic study of Korean Collybiopsis to reflect the current classification system and confirmed 16 species. We propose their Korean names in this research note.

Application of Decision Tree for the Classification of Antimicrobial Peptide

  • Lee, Su Yeon;Kim, Sunkyu;Kim, Sukwon S.;Cha, Seon Jeong;Kwon, Young Keun;Moon, Byung-Ro;Lee, Byeong Jae
    • Genomics & Informatics
    • /
    • v.2 no.3
    • /
    • pp.121-125
    • /
    • 2004
  • The purpose of this study was to investigate the use of decision tree for the classification of antimicrobial peptides. The classification was based on the activities of known antimicrobial peptides against common microbes including Escherichia coli and Staphylococcus aureus. A feature selection was employed to select an effective subset of features from available attribute sets. Sequential applications of decision tree with 17 nodes with 9 leaves and 13 nodes with 7 leaves provided the classification rates of $76.74\%$ and $74.66\%$ against E. coli and S. aureus, respectively. Angle subtended by positively charged face and the positive charge commonly gave higher accuracies in both E. coli and S. aureusdatasets. In this study, we describe a successful application of decision tree that provides the understanding of the effects of physicochemical characteristics of peptides on bacterial membrane.

A Case Study on the Application of Plant Classification Learning for 4th Grade Elementary School Using Machine Learning in Online Learning (온라인 학습에서 머신러닝을 활용한 초등 4학년 식물 분류 학습의 적용 사례 연구)

  • Shin, Won-Sub;Shin, Dong-Hoon
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.1
    • /
    • pp.66-80
    • /
    • 2021
  • This study is a case study that applies plant classification learning using machine learning to fourth graders in elementary school in online learning situations. In this study, a plant classification learning education program associated with 2015 revision science curriculum was developed by applying the Artificial Intelligence biological classification teaching Learning model. The study participants were 31 fourth graders who agreed to participate voluntarily. Plant classification learning using machine learning was applied six hours for three weeks. The results of this study are as follows. First, as a result of image analysis on artificial intelligence, participants were mainly aware of artificial intelligence as mechanical (27%), human (23%) and household goods (23%). Second, an artificial intelligence recognition survey by semantic discrimination found that artificial intelligence was recognized as smart, good, accurate, new, interesting, necessary, and diverse. Third, there was a difference between men and women in perception and emotion of artificial intelligence, and there was no difference in perception of the ability of artificial intelligence. Fourth, plant classification learning using machine learning in this study influenced changes in artificial intelligence perception. Fifth, plant classification learning using machine learning in this study had a positive effect on reasoning ability.

Classification of Transient Signals in Ocean Background Noise Using Bayesian Classifier (베이즈 분류기를 이용한 수중 배경소음하의 과도신호 분류)

  • Kim, Ju-Ho;Bok, Tae-Hoon;Paeng, Dong-Guk;Bae, Jin-Ho;Lee, Chong-Hyun;Kim, Seong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.57-63
    • /
    • 2012
  • In this paper, a Bayesian classifier based on PCA (principle component analysis) is proposed to classify underwater transient signals using $16^{th}$ order LPC (linear predictive coding) coefficients as feature vector. The proposed classifier is composed of two steps. The mechanical signals were separated from biological signals in the first step, and then each type of the mechanical signal was recognized in the second step. Three biological transient signals and two mechanical signals were used to conduct experiments. The classification ratios for the feature vectors of biological signals and mechanical signals were 94.75% and 97.23%, respectively, when all 16 order LPC vector were used. In order to determine the effect of underwater noise on the classification performance, underwater ambient noise was added to the test signals and the classification ratio according to SNR (signal-to-noise ratio) was compared by changing dimension of feature vector using PCA. The classification ratios of the biological and mechanical signals under ocean ambient noise at 10dB SNR, were 0.51% and 100% respectively. However, the ratios were changed to 53.07% and 83.14% when the dimension of feature vector was converted to three by applying PCA. For correct, classification, it is required SNR over 10 dB for three dimension feature vector and over 30dB SNR for seven dimension feature vector under ocean ambient noise environment.

Therapeutic Appilication of Molecular Genetics in Psychiatry (정신과에서 분자유전학의 치료적 적용)

  • Lee, Min Soo
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.1
    • /
    • pp.17-33
    • /
    • 1998
  • Advances in molecular biology contribute to the understanding genetic mechanism of psychiatric disorders. They have renewed hope for the discovery of disease relevant gene. However, the results somewhat confused. And we will wait for a long time for the application of gene therapy in schizophreniar. Fortunately we could classified the schizophrenia with genotypes of dopamine and serotonin receptors. It is expected that this genetic classification could provide key strategy for the therapeutic application in biological treatment for schizophrenia. The purpose of this article is to call attention of the institute participants to linkage, association, mRNA expression, genotypic classification and to the need for more systemic research. The author summarized the modified methods which were done in his laboratory in appendix.

  • PDF

Lung Sound Classification Using Hjorth Descriptor Measurement on Wavelet Sub-bands

  • Rizal, Achmad;Hidayat, Risanuri;Nugroho, Hanung Adi
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1068-1081
    • /
    • 2019
  • Signal complexity is one point of view to analyze the biological signal. It arises as a result of the physiological signal produced by biological systems. Signal complexity can be used as a method in extracting the feature for a biological signal to differentiate a pathological signal from a normal signal. In this research, Hjorth descriptors, one of the signal complexity measurement techniques, were measured on signal sub-band as the features for lung sounds classification. Lung sound signal was decomposed using two wavelet analyses: discrete wavelet transform (DWT) and wavelet packet decomposition (WPD). Meanwhile, multi-layer perceptron and N-fold cross-validation were used in the classification stage. Using DWT, the highest accuracy was obtained at 97.98%, while using WPD, the highest one was found at 98.99%. This result was found better than the multi-scale Hjorth descriptor as in previous studies.