• Title/Summary/Keyword: biological cells

Search Result 4,873, Processing Time 0.028 seconds

Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot

  • Kwon, Yoojin;Kim, Ji Wook;Jeoung, Jo Ae;Kim, Mi-Sung;Kang, Chanhee
    • Molecules and Cells
    • /
    • v.40 no.9
    • /
    • pp.607-612
    • /
    • 2017
  • When mammalian cells and animals face a variety of internal or external stresses, they need to make homeostatic changes so as to cope with various stresses. To this end, mammalian cells are equipped with two critical stress responses, autophagy and cellular senescence. Autophagy and cellular senescence share a number of stimuli including telomere shortening, DNA damage, oncogenic stress and oxidative stress, suggesting their intimate relationship. Autophagy is originally thought to suppress cellular senescence by removing damaged macromolecules or organelles, yet recent studies also indicated that autophagy promotes cellular senescence by facilitating the synthesis of senescence-associated secretory proteins. These seemingly opposite roles of autophagy may reflect a complex picture of autophagic regulation on cellular senescence, including different types of autophagy or a unique spatiotemporal activation of autophagy. Thus, a better understanding of autophagy process will lead us to not only elucidate the conundrum how autophagy plays dual roles in the regulation of cellular senescence but also helps the development of new therapeutic strategies for many human diseases associated with cellular senescence. We address the pro-senescence and anti-senescence roles of autophagy while focusing on the potential mechanistic aspects of this complex relationship between autophagy and cellular senescence.

Suppressive Effects of Young Radish Cultivated with Sulfur on Growth and Metastasis of B16-F10 Melanoma Cells

  • Kim Soo-Jin;Kim Byung-Sam;Kyung Tae-Wook;Lee Sang-Chul;Rho Chi-Woong;Choi Kyung-Rak;Hwang Hae-Jun;Choi Hye-Seon
    • Archives of Pharmacal Research
    • /
    • v.29 no.3
    • /
    • pp.235-240
    • /
    • 2006
  • The oral administration of extracts of young radishes cultivated with sulfur after intravenous tumor cell injection achieved a marked reduction of pulmonary colonization in mice. Treatment of the mice with extracts of young radish cultivated with sulfur did not show any increase in the number of CD8+ or NK T cells in the spleen, indicating no influence on host immunity. Sulforaphane, which could be a candidate for an active compound from young radishes cultivated with sulfur, inhibited cell growth of B16-F10 melanoma cells. In addition, extracts of the young radish cultivated with sulfur-fed group showed enhanced quinine reductase (QR) activities in the liver and lung and a slight increase of glutathione S-transferase (GST) activity in the liver. These results suggested that the administration of extracts of young radishes cultivated with sulfur suppressed pulmonary tumorigenesis, possibly due to increased activity of detoxification enzymes in the liver and lung, and partly due to cell cytotoxicity.

The Gene Expression Profile of Cyst Epithelial Cells in Autosomal Dominant Polycystic Kidney Disease Patients

  • Lee, Jae-Eun;Park, Min-Ha;Park, Jong-Hoon
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.612-617
    • /
    • 2004
  • Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by the formation of fluid-filled cysts in the kidney and progressive renal failure. Other manifestations of ADPKD include the formation of cysts in other organs (liver, pancreas, and spleen), hypertension, cardiac defects, and cerebral aneurysms. The loss of function of the polycystin -1 and -2 results in the formation of epithelium-lined cysts, a process that depends on initial epithelial proliferation. cDNA microarrays powerfully monitor gene expression and have led to the discoveries of pathways regulating complex biological processes. We undertook to profile the gene expression patterns of epithelial cells derived from the cysts of ADPKD patients using the cDNA microarray technique. Candidate genes that were differently expressed in cyst tissues were identified. 19 genes were up-regulated, and 6 down-regulated. Semi-quantitative RT-PCR results were consistent with the microarray findings. To distinguish between normal and epithelial cells, we used the hierarchical method. The results obtained may provide a molecular basis for understanding the biological meaning of cytogenesis.

Cloning, Sequencing and Baculovirus-based Expression of Fusion-Glycoprotein D Gene of Herpes Simplex Virus Type 1 (F)

  • Uh, Hong-Sun;Choi, Jin-Hee;Byun, Si-Myung;Kim, Soo-Young;Lee, Hyung-Hoan
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.371-378
    • /
    • 2001
  • The Glycoprotein D (gD) gene of the HSV-1 strain F was cloned, sequenced, recombinated into the HcNPV (Hyphantria cunea nuclear polyhedrosis virus) expression vector and expressed in insect cells. The gD gene was located in the 6.43 kb BamHI fragment of the strainF. The open reading frame (ORF) of the gD gene was 1,185 by and codes 394 amino acid residues. Recombinant baculoviruses, GD-HcNPVs, expressing the gD protein were constructed. Spodoptera frugiperda cells, infected with the recombinant virus, synthesized a matured gX-gD fusion protein with an approximate molecular weight of 54 kDa and secreted the gD proteins into the culture media by an immunoprecipitation assay The fusion gD protein was localized on the membrane of the insect cells, seen by using an immunofluorescence assay The deduced amino acid sequence presents additional characteristics compatible with the structure of a viral glycoprotein: signal peptide, putative glycosylation sites and a long C-terminal transmembrane sequence. These results indicate the utility of the HcNPV-insect cell system for producing and characterizing eukaryotic proteins.

  • PDF

Cytokinin and Nitrogen-Mediated Gene Regulation for $C_4$ Photosynthesis

  • Sugiyama, Tatsuo;Takei, Kentaroch;Deji, Atsushi;Tanguichi, Mitsutaka;Sakakibara, Hitoshi
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.50-63
    • /
    • 1996
  • Nitrogen (N) is an important regulator of the expression of genes involved in carbon and N assimilation pathways in plants by selectively altering the levels of proteins and/or mRNAs. These in C4 plants include genes for such as phosphoenolpyruvate carboxylase, carbonic anhydrase, and pyruvate-Pi dikinase. The C4 genes are regulated in mesophyll cells by N availability both transcriptionally and posttranscriptionally through cytokinins and glutamine as signals. The level of both the signals is up-regulated by N availability: cytokinins in roots and glutamine in leaves. The level of glutamine is controlled by the differential expression by N of glutamine synthetase and ferrdoxin-dependent glutamate synthase genes which locate in the mesophyll cells of C4 plants. The results is discussed as molecular mechanism for the greater N use efficiency of the plants as well as N partitioning is the photosynthetic cells.

  • PDF

EMPAS: Electron Microscopy Screening for Endogenous Protein Architectures

  • Kim, Gijeong;Jang, Seongmin;Lee, Eunhye;Song, Ji-Joon
    • Molecules and Cells
    • /
    • v.43 no.9
    • /
    • pp.804-812
    • /
    • 2020
  • In cells, proteins form macromolecular complexes to execute their own unique roles in biological processes. Conventional structural biology methods adopt a bottom-up approach starting from defined sets of proteins to investigate the structures and interactions of protein complexes. However, this approach does not reflect the diverse and complex landscape of endogenous molecular architectures. Here, we introduce a top-down approach called Electron Microscopy screening for endogenous Protein ArchitectureS (EMPAS) to investigate the diverse and complex landscape of endogenous macromolecular architectures in an unbiased manner. By applying EMPAS, we discovered a spiral architecture and identified it as AdhE. Furthermore, we performed screening to examine endogenous molecular architectures of human embryonic stem cells (hESCs), mouse brains, cyanobacteria and plant leaves, revealing their diverse repertoires of molecular architectures. This study suggests that EMPAS may serve as a tool to investigate the molecular architectures of endogenous macromolecular proteins.

Leptin stimulates IGF-1 transcription by activating AP-1 in human breast cancer cells

  • Min, Dong Yeong;Jung, Euitaek;Kim, Juhwan;Lee, Young Han;Shin, Soon Young
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.385-390
    • /
    • 2019
  • Leptin, an adipokine regulating energy metabolism, appears to be associated with breast cancer progression. Insulin-like growth factor-1 (IGF-1) mediates the pathogenesis of breast cancer. The regulation of IGF-1 expression by leptin in breast cancer cells is unclear. Here, we found that leptin upregulates IGF-1 expression at the transcriptional level in breast cancer cells. Activating protein-1 (AP-1)-binding element within the proximal region of IGF-1 was necessary for leptin-induced IGF-1 promoter activation. Forced expression of AP-1 components, c-FOS or c-JUN, enhanced leptin-induced IGF-1 expression, while knockdown of c-FOS or c-JUN abrogated leptin responsiveness. All three MAPKs (ERK1/2, JNK1/2, and p38 MAPK) mediated leptin-induced IGF-1 expression. These results suggest that leptin contributes to breast cancer progression through the transcriptional upregulation of leptin via the MAPK pathway.

Neuroglial Cells and Schizophrenia (신경아교세포와 조현병)

  • Won, Seunghee
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.2
    • /
    • pp.47-54
    • /
    • 2015
  • In the past decade, structural, molecular, and functional changes in glial cells have become a major focus in the search for the neurobiological foundations of schizophrenia. Glial cells, consisting of oligodendrocytes, astrocytes, microglia, and nerve/glial antigen 2-positive cells, constitute a major cell population in the central nervous system. There is accumulating evidence of reduced numbers of oligodendrocytes and altered expression of myelin/oligodendrocyte-related genes that might explain the white matter abnormalities and altered inter- and intra-hemispheric connectivities that are characteristic signs of schizophrenia. Astrocytes play a key role in the synaptic metabolism of neurotransmitters ; thus, astrocyte dysfunction may contribute to certain aspects of altered neurotransmission in schizophrenia. Increased densities of microglial cells and aberrant expression of microglia-related surface markers in schizophrenia suggest that immunological/inflammatory factors are of considerable relevance to the pathophysiology of psychosis. This review describes current evidence for the multifaceted role of glial cells in schizophrenia and discusses efforts to develop glia-directed therapies for the treatment of the disease.

Cobalt Chloride-Induced Downregulation of Puromycin-Sensitive Aminopeptidase Suppresses the Migration and Invasion of PC-3 Cells

  • Lee, Suk-Hee;Kim, Hwan-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.530-536
    • /
    • 2009
  • Cobalt chloride ($CoCl_2$) treatment of cells in vitro has been shown to induce cellular changes that are similar to those seen following hypoxia. To identify genes that are differentially expressed in response to treatment with $CoCl_2$, we compared the mRNA expression profiles of PC-3 cells that were treated with $CoCl_2$ with those of untreated PC-3 cells, using specific arbitrary primers and two anchored oligo(dT) primers provided in the ACP-based GeneFishing kits. The results of this study demonstrated that the puromycin-sensitive aminopeptidase (PSA) gene was down regulated in PC-3 cells that were treated with $CoCl_2$. This downregulation of PSA expression, in turn, suppressed the proliferation, migration, and invasion of PC-3 cells, as well as the secretion and expression of matrix metalloproteinase-9 (MMP-9).

Allogeneic Transplantation of Mesenchymal Stem Cells from Human Umbilical Cord Blood

  • Lee, Jae-Kwon
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.187-195
    • /
    • 2007
  • The cord blood serves as a vehicle for the transportation of oxygen and nutrients to the fetus. In the past, the human cord blood has generally been discarded after birth. However, numerous studies have described the regenerative ability of the cord blood cells in various incurable diseases. The umbilical cord blood (UCB)-derived stem cells are obtained through non-invasive methods that are not harmful to both the mother and the fetus. Furthermore, the cord blood stem cells are more immature than the adult stem cells and expand readily in vitro. The mesenchymal stem cells (MSCs) have the capacity to differentiate in vitro into various mesodermal (bone, cartilage, tendon, muscle, and adipose), endodermal (hepatocyte), and ectodermal (neurons) tissues. This review describes the immunological properties of the human UCB-MSCs to assess their potential usefulness in the allogeneic transplantation for the regenerative medicine.