DOI QR코드

DOI QR Code

Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot

  • Kwon, Yoojin (School of Biological Sciences, Seoul National University) ;
  • Kim, Ji Wook (School of Biological Sciences, Seoul National University) ;
  • Jeoung, Jo Ae (School of Biological Sciences, Seoul National University) ;
  • Kim, Mi-Sung (School of Biological Sciences, Seoul National University) ;
  • Kang, Chanhee (School of Biological Sciences, Seoul National University)
  • Received : 2017.07.30
  • Accepted : 2017.08.15
  • Published : 2017.09.30

Abstract

When mammalian cells and animals face a variety of internal or external stresses, they need to make homeostatic changes so as to cope with various stresses. To this end, mammalian cells are equipped with two critical stress responses, autophagy and cellular senescence. Autophagy and cellular senescence share a number of stimuli including telomere shortening, DNA damage, oncogenic stress and oxidative stress, suggesting their intimate relationship. Autophagy is originally thought to suppress cellular senescence by removing damaged macromolecules or organelles, yet recent studies also indicated that autophagy promotes cellular senescence by facilitating the synthesis of senescence-associated secretory proteins. These seemingly opposite roles of autophagy may reflect a complex picture of autophagic regulation on cellular senescence, including different types of autophagy or a unique spatiotemporal activation of autophagy. Thus, a better understanding of autophagy process will lead us to not only elucidate the conundrum how autophagy plays dual roles in the regulation of cellular senescence but also helps the development of new therapeutic strategies for many human diseases associated with cellular senescence. We address the pro-senescence and anti-senescence roles of autophagy while focusing on the potential mechanistic aspects of this complex relationship between autophagy and cellular senescence.

Keywords

References

  1. Amaravadi, R.K., Yu, D., Lum, J.J., Bui, T., Christophorou, M.A., Evan, G.I., Thomas-Tikhonenko, A., and Thompson, C.B. (2007). Autophagy inhibition enhances therapy-induced apoptosis in a Mycinduced model of lymphoma. J. Clin. Invest. 117, 326-336. https://doi.org/10.1172/JCI28833
  2. Boya, P., Reggiori, F., and Codogno, P. (2013). Emerging regulation and functions of autophagy. Nat. Cell Biol. 15, 713-720. https://doi.org/10.1038/ncb2788
  3. Capparelli, C., Chiavarina, B., Whitaker-Menezes, D., Pestell, T.G., Pestell, R.G., Hulit, J., Ando, S., Howell, A., Martinez-Outschoorn, U.E., Sotgia, F., et al. (2012). CDK inhibitors (p16/p19/p21). induce senescence and autophagy in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, without an increase in neoangiogenesis. Cell Cycle 11, 3599-3610. https://doi.org/10.4161/cc.21884
  4. Childs, B.G., Durik, M., Baker, D.J., and van Deursen, J.M. (2015). Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med. 21, 1424-1435. https://doi.org/10.1038/nm.4000
  5. Choi, A.M., Ryter, S.W., and Levine, B. (2013). Autophagy in human health and disease. N. Engl. J. Med. 368, 1845-1846. https://doi.org/10.1056/NEJMc1303158
  6. Coppe, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99-118. https://doi.org/10.1146/annurev-pathol-121808-102144
  7. Dalle Pezze, P., Nelson, G., Otten, E.G., Korolchuk, V.I., Kirkwood, T.B., von Zglinicki, T., and Shanley, D.P. (2014). Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput. Biol. 10, e1003728. https://doi.org/10.1371/journal.pcbi.1003728
  8. Dou, Z., Xu, C., Donahue, G., Shimi, T., Pan, J.A., Zhu, J., Ivanov, A., Capell, B.C., Drake, A.M., Shah, P.P., et al. (2015). Autophagy mediates degradation of nuclear lamina. Nature 527, 105-109. https://doi.org/10.1038/nature15548
  9. Dou, Z., Ivanov, A., Adams, P.D., and Berger, S.L. (2016). Mammalian autophagy degrades nuclear constituents in response to tumorigenic stress. Autophagy 12, 1416-1417. https://doi.org/10.1080/15548627.2015.1127465
  10. Galluzzi, L., Kepp, O., Vander Heiden, M.G., and Kroemer, G. (2013). Metabolic targets for cancer therapy. Nat. Rev. Drug Dis. 12, 829-846. https://doi.org/10.1038/nrd4145
  11. Garcia-Prat, L., Martinez-Vicente, M., Perdiguero, E., Ortet, L., Rodriguez-Ubreva, J., Rebollo, E., Ruiz-Bonilla, V., Gutarra, S., Ballestar, E., Serrano, A.L., et al. (2016). Autophagy maintains stemness by preventing senescence. Nature 529, 37-42. https://doi.org/10.1038/nature16187
  12. Gewirtz, D.A. (2013). Autophagy and senescence: a partnership in search of definition. Autophagy 9, 808-812. https://doi.org/10.4161/auto.23922
  13. Han, X., Tai, H., Wang, X., Wang, Z., Zhou, J., Wei, X., Ding, Y., Gong, H., Mo, C., Zhang, J., et al. (2016). AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+). elevation. Aging Cell 15, 416-427. https://doi.org/10.1111/acel.12446
  14. He, S., and Sharpless, N.E. (2017). Senescence in health and disease. Cell 169, 1000-1011. https://doi.org/10.1016/j.cell.2017.05.015
  15. Horikawa, I., Fujita, K., Jenkins, L.M., Hiyoshi, Y., Mondal, A.M., Vojtesek, B., Lane, D.P., Appella, E., and Harris, C.C. (2014). Autophagic degradation of the inhibitory p53 isoform Delta133p53alpha as a regulatory mechanism for p53-mediated senescence. Nat. Commun. 5, 4706. https://doi.org/10.1038/ncomms5706
  16. Huang, Y.H., Yang, P.M., Chuah, Q.Y., Lee, Y.J., Hsieh, Y.F., Peng, C.W., and Chiu, S.J. (2014). Autophagy promotes radiation-induced senescence but inhibits bystander effects in human breast cancer cells. Autophagy 10, 1212-1228. https://doi.org/10.4161/auto.28772
  17. Ito, S., Araya, J., Kurita, Y., Kobayashi, K., Takasaka, N., Yoshida, M., Hara, H., Minagawa, S., Wakui, H., Fujii, S., et al. (2015). PARK2- mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy 11, 547-559. https://doi.org/10.1080/15548627.2015.1017190
  18. Jin, M., Liu, X., and Klionsky, D.J. (2013). SnapShot: selective autophagy. Cell 152, 368-368 e362. https://doi.org/10.1016/j.cell.2013.01.004
  19. Johansen, T., and Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279-296. https://doi.org/10.4161/auto.7.3.14487
  20. Kang, C., and Avery, L. (2008). To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy 4, 82-84. https://doi.org/10.4161/auto.5154
  21. Kang, C., and Avery, L. (2009a). Systemic regulation of autophagy in Caenorhabditis elegans. Autophagy 5, 565-566. https://doi.org/10.4161/auto.5.4.8171
  22. Kang, C., and Avery, L. (2009b). Systemic regulation of starvation response in Caenorhabditis elegans. Genes Dev. 23, 12-17. https://doi.org/10.1101/gad.1723409
  23. Kang, C., and Elledge, S.J. (2016). How autophagy both activates and inhibits cellular senescence. Autophagy 12, 898-899. https://doi.org/10.1080/15548627.2015.1121361
  24. Kang, C., You, Y.J., and Avery, L. (2007). Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev. 21, 2161-2171. https://doi.org/10.1101/gad.1573107
  25. Kang, H.T., Park, J.T., Choi, K., Kim, Y., Choi, H.J.C., Jung, C.W., Lee, Y.S., and Park, S.C. (2017). Chemical screening identifies ATM as a target for alleviating senescence. Nat. Chem. Biol. 13, 616-623. https://doi.org/10.1038/nchembio.2342
  26. Kang, H.T., Lee, K.B., Kim, S.Y., Choi, H.R., and Park, S.C. (2011). Autophagy impairment induces premature senescence in primary human fibroblasts. PloS One 6, e23367. https://doi.org/10.1371/journal.pone.0023367
  27. Kang, C., Xu, Q., Martin, T.D., Li, M.Z., Demaria, M., Aron, L., Lu, T., Yankner, B.A., Campisi, J., and Elledge, S.J. (2015). The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, aaa5612. https://doi.org/10.1126/science.aaa5612
  28. Klionsky, D.J., and Codogno, P. (2013). The mechanism and physiological function of macroautophagy. J. Innate Immun. 5, 427-433. https://doi.org/10.1159/000351979
  29. Korolchuk, V.I., Miwa, S., Carroll, B., and von Zglinicki, T. (2017). Mitochondria in cell senescence: is mitophagy the weakest link? EBioMedicine 21, 7-13. https://doi.org/10.1016/j.ebiom.2017.03.020
  30. Kroemer, G. (2015). Autophagy: a druggable process that is deregulated in aging and human disease. J. Clin. Invest. 125, 1-4. https://doi.org/10.1172/JCI78652
  31. Kroemer, G., Marino, G., and Levine, B. (2010). Autophagy and the integrated stress response. Mol. Cell 40, 280-293. https://doi.org/10.1016/j.molcel.2010.09.023
  32. Kuilman, T., Michaloglou, C., Mooi, W.J., and Peeper, D.S. (2010). The essence of senescence. Genes Dev. 24, 2463-2479. https://doi.org/10.1101/gad.1971610
  33. Lapierre, L.R., Kumsta, C., Sandri, M., Ballabio, A., and Hansen, M. (2015). Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 11, 867-880. https://doi.org/10.1080/15548627.2015.1034410
  34. Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42. https://doi.org/10.1016/j.cell.2007.12.018
  35. Liu, H., He, Z., and Simon, H.U. (2014). Autophagy suppresses melanoma tumorigenesis by inducing senescence. Autophagy 10, 372-373. https://doi.org/10.4161/auto.27163
  36. Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039
  37. Luo, J., Solimini, N.L., and Elledge, S.J. (2009). Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823-837. https://doi.org/10.1016/j.cell.2009.02.024
  38. Munoz-Espin, D., and Serrano, M. (2014). Cellular senescence: from physiology to pathology. Nature reviews. Mol. Cell Biol. 15, 482-496. https://doi.org/10.1038/nrm3823
  39. Nah, J., Yuan, J., and Jung, Y.K. (2015). Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol. Cells 38, 381-389. https://doi.org/10.14348/molcells.2015.0034
  40. Nam, H.Y., Han, M.W., Chang, H.W., Kim, S.Y., and Kim, S.W. (2013). Prolonged autophagy by MTOR inhibitor leads radioresistant cancer cells into senescence. Autophagy 9, 1631-1632. https://doi.org/10.4161/auto.25879
  41. Narita, M., Young, A.R., Arakawa, S., Samarajiwa, S.A., Nakashima, T., Yoshida, S., Hong, S., Berry, L.S., Reichelt, S., Ferreira, M., et al. (2011). Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332, 966-970. https://doi.org/10.1126/science.1205407
  42. Nopparat, C., Sinjanakhom, P., and Govitrapong, P. (2017). Melatonin reverses H2 O2 -induced senescence in SH-SY5Y cells by enhancing autophagy via sirtuin 1 deacetylation of the RelA/p65 subunit of NF-kappaB. J. Pineal Res. 63.
  43. Passos, J.F., Saretzki, G., Ahmed, S., Nelson, G., Richter, T., Peters, H., Wappler, I., Birket, M.J., Harold, G., Schaeuble, K., et al. (2007). Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 5, e110. https://doi.org/10.1371/journal.pbio.0050110
  44. Rubinsztein, D.C., Marino, G., and Kroemer, G. (2011). Autophagy and aging. Cell 146, 682-695. https://doi.org/10.1016/j.cell.2011.07.030
  45. Shaid, S., Brandts, C.H., Serve, H., and Dikic, I. (2013). Ubiquitination and selective autophagy. Cell Death Differ. 20, 21-30. https://doi.org/10.1038/cdd.2012.72
  46. Soto-Gamez, A., and Demaria, M. (2017). Therapeutic interventions for aging: the case of cellular senescence. Drug Dis. Today 22, 786-795. https://doi.org/10.1016/j.drudis.2017.01.004
  47. Tai, H., Wang, Z., Gong, H., Han, X., Zhou, J., Wang, X., Wei, X., Ding, Y., Huang, N., Qin, J., et al. (2017). Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 13, 99-113. https://doi.org/10.1080/15548627.2016.1247143
  48. Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J., and Kirkland, J.L. (2013). Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966-972. https://doi.org/10.1172/JCI64098
  49. Wen, X., and Klionsky, D.J. (2016). Autophagy is a key factor in maintaining the regenerative capacity of muscle stem cells by promoting quiescence and preventing senescence. Autophagy 12, 617-618. https://doi.org/10.1080/15548627.2016.1158373
  50. Wiley, C.D., Velarde, M.C., Lecot, P., Liu, S., Sarnoski, E.A., Freund, A., Shirakawa, K., Lim, H.W., Davis, S.S., Ramanathan, A., et al. (2016). Mitochondrial Dysfunction induces senescence with a distinct secretory phenotype. Cell Metabol. 23, 303-314. https://doi.org/10.1016/j.cmet.2015.11.011
  51. Young, A.R., Narita, M., Ferreira, M., Kirschner, K., Sadaie, M., Darot, J.F., Tavare, S., Arakawa, S., Shimizu, S., Watt, F.M., et al. (2009). Autophagy mediates the mitotic senescence transition. Genes Dev. 23, 798-803. https://doi.org/10.1101/gad.519709

Cited by

  1. Hallmarks of Aging: An Autophagic Perspective vol.9, pp.1664-2392, 2018, https://doi.org/10.3389/fendo.2018.00790
  2. Short-term gain, long-term pain: the senescence life cycle and cancer vol.33, pp.3-4, 2019, https://doi.org/10.1101/gad.320937.118
  3. Is Ras a potential target in treatment against cutaneous squamous cell carcinoma? vol.9, pp.18, 2017, https://doi.org/10.7150/jca.25083
  4. Cellular Senescence and the Kidney: Potential Therapeutic Targets and Tools vol.10, pp.None, 2017, https://doi.org/10.3389/fphar.2019.00770
  5. Integrating cellular senescence with the concept of damage accumulation in aging: Relevance for clearance of senescent cells vol.18, pp.1, 2017, https://doi.org/10.1111/acel.12841
  6. The multifaceted role of autophagy in cancer and the microenvironment vol.39, pp.2, 2019, https://doi.org/10.1002/med.21531
  7. Senescent cells: Living or dying is a matter of NK cells vol.105, pp.6, 2017, https://doi.org/10.1002/jlb.mr0718-299r
  8. Mitochondrial Homeostasis and Cellular Senescence vol.8, pp.7, 2019, https://doi.org/10.3390/cells8070686
  9. Autophagy and senescence: A new insight in selected human diseases vol.234, pp.12, 2017, https://doi.org/10.1002/jcp.28895
  10. Accelerated Kidney Aging in Diabetes Mellitus vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/1234059
  11. Paricalcitol Attenuates Contrast-Induced Acute Kidney Injury by Regulating Mitophagy and Senescence vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/7627934
  12. Dual Role of Autophagy in Regulation of Mesenchymal Stem Cell Senescence vol.8, pp.None, 2017, https://doi.org/10.3389/fcell.2020.00276
  13. Sulforaphane Inhibits Autophagy and Induces Exosome‐Mediated Paracrine Senescence via Regulating mTOR/TFE3 vol.64, pp.14, 2017, https://doi.org/10.1002/mnfr.201901231
  14. Radioprotectors.org: an open database of known and predicted radioprotectors vol.12, pp.15, 2020, https://doi.org/10.18632/aging.103815
  15. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1 vol.17, pp.1, 2017, https://doi.org/10.1080/15548627.2020.1797280
  16. Clemastine Ameliorates Myelin Deficits via Preventing Senescence of Oligodendrocytes Precursor Cells in Alzheimer’s Disease Model Mouse vol.9, pp.None, 2017, https://doi.org/10.3389/fcell.2021.733945
  17. The FMRFamide Neuropeptide FLP-20 Acts as a Systemic Signal for Starvation Responses in Caenorhabditis elegans vol.44, pp.7, 2017, https://doi.org/10.14348/molcells.2021.0051
  18. mTOR Activity and Autophagy in Senescent Cells, a Complex Partnership vol.22, pp.15, 2017, https://doi.org/10.3390/ijms22158149
  19. A flow-cytometry-based assessment of global protein synthesis in human senescent cells vol.2, pp.3, 2017, https://doi.org/10.1016/j.xpro.2021.100809
  20. Dysregulation of Caveolin-1 Phosphorylation and Nuclear Translocation Is Associated with Senescence Onset vol.10, pp.11, 2021, https://doi.org/10.3390/cells10112939
  21. Autophagy is deregulated in cancer-associated fibroblasts from oral cancer and is stimulated during the induction of fibroblast senescence by TGF-β1 vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-020-79789-8
  22. Autophagy and ncRNAs: Dangerous Liaisons in the Crosstalk between the Tumor and Its Microenvironment vol.14, pp.1, 2022, https://doi.org/10.3390/cancers14010020
  23. Role of stress granules in modulating senescence and promoting cancer progression: Special emphasis on glioma vol.150, pp.4, 2022, https://doi.org/10.1002/ijc.33787