• Title/Summary/Keyword: biogas recovery

Search Result 60, Processing Time 0.026 seconds

Available Technology and Integrated Management Plan for Energy-positive in the Sewage Treatment Plant (에너지 생산형 하수처리장을 위한 가용 기술과 통합관리 방안)

  • Song, Minsu;Kim, Hyoungho;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • Because of the intensified environmental problems such as climate change and resource depletion, sewage treatment technology focused on energy management has recently attracted attention. The conversion of primary sludge from the primary sedimentation tank and excessive sludge from the secondary sedimentation tank into biogas is the key to energy-positive sewage treatment. In particular, the primary sedimentation tanks recover enriched biodegradable organic matter and anaerobic digestion process produces methane from the organic wastes for energy production. Such technologies for minimizing oxygen demand are leading the innovation regarding sewage treatment plants. However, sewage treatment facilities in Korea lack core technology and operational know-how. Actually, the energy potential of sewage is higher than sewage treatment energy consumption in the sewage treatment, but current processes are not adequately efficient in energy recovery. To improve this, it is possible to apply chemically enhanced primary treatment (CEPT), high-rate activated sludge (HRAS), and anaerobic membrane bioreactor (AnMBR) to the primary sedimentation tank. To maximize the methane production of sewage treatment plants, organic wastes such as food waste and livestock manure can be digested. Additionally, mechanical pretreatment, thermal hydrolysis, and chemical pretreatment would enhance the methane conversion of organic waste. Power generation systems based on internal combustion engines are susceptible to heat source losses, requiring breakthrough energy conversion systems such as fuel cells. To realize the energy positive sewage treatment plant, primary organic matter recovery from sewage, biogas pretreatment, and co-digestion should be optimized in the energy management system based on the knowledge-based operation.

Determination of Siloxanes in Biogas by Solid-phase Adsorption on Activated Carbon

  • Kim, Nack-Joo;Chun, Seung-Kyu;Cha, Daniel K.;Kim, Cheal
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2353-2357
    • /
    • 2013
  • The objective of this study was to develop a simple, less time-consuming and accurate sampling technique based on solid-phase sorption with activated carbon as the sorbents. The results from solid-phase sorption techniques were compared to that from a conventional solvent impinger-based technique to confirm the efficacy of the proposed method. The laboratory results indicated that the solid-phase sorption method was suitable for the determination of siloxanes as the measured concentrations were similar to that from a solvent impinge method. The data from solid-phase sorption method showed excellent recovery and reproducibility while the sampling was less labor intensive and less time consuming than the solvent impinge method. Following the laboratory tests, the solid-phase sorption technique was successfully applied to sampling biogas from a field site. This study shows that the activated carbon-based solid-phase sorption can be a reliable and less time-consuming option for the sampling and collection of siloxanes under various different landfill conditions.

Empirical Study of Biogas Purification Equipment (바이오가스 정제 설비의 실증 연구)

  • Hwan Cheol Lee;Jae-Heon Lee
    • Plant Journal
    • /
    • v.18 no.4
    • /
    • pp.58-65
    • /
    • 2023
  • In this study, to increase the methane content of biogas supplied from Nanji Water Regeneration Center and to purify impurities, a three-stage membrane purification process was designed and installed to demonstrate operation. The methane concentration of biomethane produced in the 2 Nm3/h purification process was set to three cases: 95%, 96.5%, and 98%, and the membrane area ratio of the membrane was 1:1, 1:2, 1:1:1, The optimum conditions for the membrane area of the separator were derived by changing to five of 1:2:1 and 1:2:2. 3 stage separation membrane process of 30 Nm3/h was installed to reflect the optimum condition of 2 Nm3/h, and biomethane production of 98% or more of methane concentration was demonstrated. As a result of the operation of the 2 Nm3/h refining device, the methane recovery rate at the 98% methane concentration was 95.6% when the membrane area ratio was 1:1 as the result of the two-stage operation of the separator, and the recovery rate of methane at 1:2 was increased to 96.8%. The methane recovery rate of the membrane three-stage operation was highest at 96.8% when the membrane area ratio was operated at 1:2:1. The carbon dioxide removal rate was 16.4 to 96.4% and the 2:2 to 95.7% film area ratio in the two-step process. In the three-step process, the film area ratio was 1:2:1 to 95.4%, and the two-step process showed higher results than the three-step process. In the 30 Nm3/h scale biogas purification demonstration operation, the methane concentration after purification was 98%, the recovery rate of methane was 97.1%, the removal rate of carbon dioxide was 95.7%, and hydrogen sulfide, the cause of corrosion, was not detected, and the membrane area ratio was 1:2:1 demonstration operation, biomethane production with a methane concentration of 98% or higher was possible.

  • PDF

Biogas Production from Sewage Sludge in 30L Microbial Electrolysis Cell (30L 미생물전기분해전지의 하수슬러지로부터 바이오가스 생산 특성)

  • Lee, Myoung-Eun;Ahn, Yongtae;Shin, Seung Gu;Seo, Sun-Chul;Chung, Jae Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.25-33
    • /
    • 2019
  • Operating characteristics of a 30 L microbial electrolysis cell (MEC) for producing biogas from sewage sludge was studied. During the 32-day inoculation period, carbon dioxide concentration decreased and methane concentration increased with operating time, and the overall methane content of biogas was 69.1% with a production rate of 171.6 mL CH4/L·d. In fed-batch experiments for 6 operating cycles, CH4 concentration of 66.5~77.2% was obtained at a production rate of 184.9~372.9 mL CH4/L·d, COD, TS and VS removal efficiency ranged from 28.2 to 42.1%, 20.7 to 37.5% and 18.5 to 36.9%, respectively. The MEC system was observed to be stabilized as operating cycles were repeated after inoculation. In the last operating cycle, 5221 mL/L of methane was produced with CH4 yield of 316.7 L CH4/kg CODrem, and the energy recovery was 73%.

Optimal Operation of Gas Engine for Biogas Plant in Sewage Treatment Plant (하수처리장 바이오가스 플랜트의 가스엔진 최적 운영 방안)

  • Kim, Gill Jung;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.2
    • /
    • pp.18-35
    • /
    • 2019
  • The Korea District Heating Corporation operates a gas engine generator with a capacity of $4500m^3 /day$ of biogas generated from the sewage treatment plant of the Nanji Water Recycling Center and 1,500 kW. However, the actual operation experience of the biogas power plant is insufficient, and due to lack of accumulated technology and know-how, frequent breakdown and stoppage of the gas engine causes a lot of economic loss. Therefore, it is necessary to prepare technical fundamental measures for stable operation of the power plant In this study, a series of process problems of the gas engine plant using the biogas generated in the sewage treatment plant of the Nanji Water Recovery Center were identified and the optimization of the actual operation was made by minimizing the problems in each step. In order to purify the gas, which is the main cause of the failure stop, the conditions for establishing the quality standard of the adsorption capacity of the activated carbon were established through the analysis of the components and the adsorption test for the active carbon being used at present. In addition, the system was applied to actual operation by applying standards for replacement cycle of activated carbon to minimize impurities, strengthening measurement period of hydrogen sulfide, localization of activated carbon, and strengthening and improving the operation standards of the plant. As a result, the operating performance of gas engine # 1 was increased by 530% and the operation of the second engine was increased by 250%. In addition, improvement of vent line equipment has reduced work process and increased normal operation time and operation rate. In terms of economic efficiency, it also showed a sales increase of KRW 77,000 / year. By applying the strengthening and improvement measures of operating standards, it is possible to reduce the stoppage of the biogas plant, increase the utilization rate, It is judged to be an operational plan.

A Study on the Development Trends of Wastewater Sludge Treatment Technology (하·폐수 슬러지 처리기술의 개발 동향에 관한 연구)

  • Lee, Chaeyoung;Chung, Woojin;Kim, Jitae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.8
    • /
    • pp.5-15
    • /
    • 2016
  • As the increase of domestic sewage treatment plant and reinforcement of the standard of effluent water quality continues, the volumes of sewage sludge are consistently increasing. Existing treatment of sewage sludge, such as incineration and ocean dumping has been prohibited because of air pollution and prohibitions towards ocean dumping, and in turn, recycling and energy recovery from waste methods have being studied recently. However, the lack of technical level and systematic analyses of application technique are problems, that future analysis of such relative technique would be required. The present study has been investigated as follows, management technique of sludge, patent on refuse-derived fuel and increase biogas production and utilizable technology, trend of research paper. Furthermore, research development from five developed nations (Korea, Japan, China, United States, and United Kingdom), domestic and foreign have been investigated and analyzed by section. In this study, the future technical field which is required for effective management of sludge has been suggested.

Effect of Hydrophilic- and Hydrophobic-Media on the Fermentative Hydrogen Production in Trickling Bed Biofilter (생물학적 수소생산을 위한 Trickling Bed Biofilter에서의 친수성과 소수성 담체의 영향)

  • Jeon, Byung-Seung;Lee, Sun-Mi;Kim, Yong-Hwan;Chae, Hee-Jeong;Sang, Byoung-In
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.465-469
    • /
    • 2006
  • Two mesophilic trickling bed bioreactors filled with two different types of media, hydrophilic- and hydrophobic-cubes, were designed and tested for hydrogen production via anaerobic fermentation of sucrose. Each reactor consisted of a column packed with polymeric cubes and inoculated with heat-treated sludge obtained from anaerobic digestion tank. A defined medium containing sucrose was fed with changing flow rate into the capped reactor, hydraulic retention time and recycle rate. Hydrogen concentrations in gas-phase were constant, averaging 40% for all conditions tested. Hydrogen production rates increased up to $10.5 L{\cdot};h^{-1}{\cdot}L^{-1}$ of reactor when influent sucrose concentrations and recycle rates were varied. Hydrophobic media provided higher value of hydrogen production rate than hydrophilic media at the same operation conditions. No methane was detected when the reactor was under a normal operation. The major fermentation by-products in the liquid effluent of the both trickling biofilters were acetate and butyrate. The reactor filled with hydrophilic media became clogged with biomass and bio gas, requiring manual cleaning of the system, while no clogging occurred in the reactor with hydrophobic media. In order to make long-term operation of the reactor filled with hydrophilic media feasible, biofilm accumulation inside the media in the reactor with hydrophilic media and biogas produced from the reactor will need to be controlled through some process such as periodical backwashing or gas-purging. These tests using trickling bed biofilter with hydrophobic media demonstrate the feasibility of the process to produce hydrogen gas in a trickle-bed type of reactor. A likely application of this reactor technology could be hydrogen gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

  • PDF

Estimation of greenhouse gas (GHG) emission from wastewater treatment plants and effect of biogas reuse on GHG mitigation

  • Chang, Jin;Kyung, Daeseung;Lee, Woojin
    • Advances in environmental research
    • /
    • v.3 no.2
    • /
    • pp.173-183
    • /
    • 2014
  • A comprehensive mathematical model was developed for this study to estimate on-site and off-site GHG emissions from wastewater treatment plants (WWTPs). The model was applied to three different hybrid WWTPs (S-WWTP, J-WWTP, and T-WWTP) including anaerobic, anoxic, and aerobic process, located in Seoul City, South Korea. Overall on-site and off-site GHG emissions from S-WWTP, J-WWTP, and T-WWTP were $305,253kgCO_2e/d$, $282,682kgCO_2e/d$, and $117,942kgCO_2e/d$, respectively. WWTP treating higher amounts of wastewater produced more on-site and off-site GHG emissions. On average, the percentage contribution of on-site and off-site emissions was 3.03% and 96.97%. The highest amount of on-site GHG emissions was generated from anoxic process and the primary on-site GHG was nitrous oxide ($N_2O$). Off-site GHG emissions related to electricity consumption for unit operation was much higher than that related to production of chemicals for on-site usage. Recovery and reuse of biogas significantly reduced the total GHG emissions from WWTPs. The results obtained from this study can provide basic knowledge to understand the source and amount of GHG emissions from WWTPs and strategies to establish lower GHG emitting WWTPs.

Recovery of High-Purity Methane from Piggery Wastewater in the Phase-Separated Anaerobic Process (상분리 혐기성공정에 의한 양돈폐수로부터 고순도 메탄회수)

  • Jung, Jin-Young;Chung, Yun-Chul;Yoo, Chang-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.210-213
    • /
    • 2008
  • The purpose of this study is to investigate the performances of organic removal and methane recovery in the full scale two-phase anaerobic system. The full scale two-phase anaerobic system was consists of an acidogenic ABR (Anaerobic Baffled Reactor) and a methanognic UASB (Upflow Anaerobic Sludge Blanket) reactor. The volume of acidogenic and methanogenic reactors is designed to 28.3 $m^3$ and 75.3 $m^3$. The two-phase anaerobic system represented 60-82% of COD removal efficiency when the influent COD concentration was in the range of 7,150 to 16,270 mg/L after screening (average concentration is 10,280 mg/L). After steady-state, the effluent COD concentration in the methanogenic reactor showed 2,740 $\pm$ 330 mg/L by representing average COD removal efficiency was 71.4 $\pm$ 8.1% when the operating temperature was in the range of 19-32$^{\circ}C$. The effluent SCOD concentration was in the range of 2,000-3,000 mg/L at the steady state while the volatile fatty concentration was not detected in the effluent. Meanwhile, the COD removal efficiency in the acidogenic reactor showed less than 5%. The acidogenic reactor played key roles to reduce a shock-loading when periodic shock loading was applied and to acidify influent organics. Due to the high concentration of alkalinity and high pH in the effluent of the methanogenic reactor, over 80% of methane in the biogas was produced consistently. More than 70 % of methane was recovered from theoretical methane production of TCOD removed in this research. The produced gas can be directly used as a heat source to increase the reactor temperature.

  • PDF

PEI Hollow Fiber Membranes Modified with Fluorinated Silica Nanoparticles for the Recovery of Biogas from Anaerobic Effluents (불화 실리카로 개질된 폴리에테르이미드 중공사막을 이용한 혐기성 유출수로부터 바이오가스 회수)

  • Yun, Kang Hee;Wongchitphimon, Sunee;Bae, Tae-hyun
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.326-332
    • /
    • 2020
  • In this study, polymer-fluorinated silica composite hollow fiber membranes were fabricated and applied to a membrane contactor for the recovery of methane dissolved in the anaerobic effluent. To prepare the composite membranes, porous hollow fiber substrates were fabricated with Ultem®, a commercial polyetherimide (PEI). Subsequently, fluorinated silica particles were synthesized and coated on the surface via strong covalent bonding. Due to the high porosity, our membrane showed a CH4 flux of 8.25 × 10-5 ㎤ (STP)/㎠·s at the liquid velocity of 0.03 m/s which is much higher that that of commercial polypropylene membrane designed for degassing processes. This is attributed to our membrane's high porosity as well as a superior surface hydrophobicity (120~122°) resulted from the coating with fluorinated silica nanoparticles.