• Title/Summary/Keyword: biofilter,

Search Result 363, Processing Time 0.026 seconds

Nitrification Efficiency in Fixed Film Biofilters using Different Filter Media in Simulated Seawater Aquarium System

  • Peng, Lei;Jo, Jae-Yoon
    • Journal of Aquaculture
    • /
    • v.16 no.4
    • /
    • pp.203-209
    • /
    • 2003
  • Nitrification efficiency of fixed film biofilters with sand, loess bead, and styrofoam bead in biofilter columns of 1-m height and 30 cm width was studied. Synthetic wastewater was continuously supplied to the culture tank to maintain total ammonia nitrogen (TAN) concentration in the inflow water at around 8 mg/L. The hydraulic loading rate was set at 200 ㎥/$m^2$/day. TAN conversion was stabilized after about 90 day conditioning for all the selected filter media but with net accumulations of nitrite. On the volumetric basis, conversion rates of TAN and nitrite were the highest in styrofoam bead filter. Mean volumetric TAN conversion rates in the final samples were 682, 269, and 79 g TAN/㎥/day in the styrofoam bead, sand and loess bead filters, respectively. Low gravity and cost of styrofoam bead render the handling easier and more cost-effective.

Biodegradation Characteristics of Dimethyl sulfide [DMS] by Isolated Gordonia sihwaniensis PKL-1 (Dimethyl Sulfide [DMS] 분해균주인 Gordonia sihwaniensis PKL-1의 생물학적 분해특성)

  • 정인경;이일현;박창호
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.143-147
    • /
    • 2004
  • Biodegradation of dimethyl sulfide (DMS) was studied in a batch culture using Gordonia sihwaniensis PKL-1 isolated from a compost biofilter after 100 days of operation for the removal of volatile organic compounds. Optimal pH and temperature for the removal of DMS were 7 and $25^{\circ}C$, respectively. The Michaelis-Menten kinetic constants for DMS removal, $\upsilon_{max}$ and $K_s$, were 0.0016 mg/(mg-protein)ㆍhr, and 8.05 mg/L, respectively.

Study on the Suitability Selection for Construction of Seaweed Bed in Sewage Water Ocean Outfall Area (해양방류수역에서 해조장 조성적지 선정 연구)

  • SHIN, Bong-Kyun;CHOI, Chang-Geun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.4
    • /
    • pp.1021-1030
    • /
    • 2015
  • For the water quality improvement in the ocean outfall area of sewage treatment plant, this study tried to control the water quality of outfall area using the biofilter method through seaweeds, a way of ecological engineering treatment that is applicable in the marine ecosystem. Therefore, this research made an attempt the main factors necessary for creating seaweed bed to improve water quality in the outfall area of sewage treatment plant, and the results are as follows. In the case of making the seaweed bed in the ocean outfall area of sewage treatment plant, Habitat Suitability Index of Ecklonia cava per all survey points, considered physical and physico-chemical factors in 5~10 meters below sea level, was 50~93% (average 80%), so this seaweed, Ecklonia cava, was suitable for making the seaweed bed.

Volatile Fatty Acids Production During Anaerobic and Aerobic Animal Manure Bio-treatment

  • Hong, J.H.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.219-232
    • /
    • 2007
  • Odors from manures are a major problem for livestock production. The most significant odorous compounds in animal manure a.e volatile fatty acids(VFAs). This work reviews the VFAs from the anaerobic sequencing biofilm batch reactor(ASBBR), anaerobic sequencing batch reactor(ASBR), solid compost batch reactor(SCBR), and aerobic sequencing batch reactor(SBR) associated with the animal manure biological treatment. First, we describe and quantify VFAs from animal manure biological treatment and discuss biofiltration for odor control. Then we review certain fundamentals aspects about Anaerobic and aerobic SBR, composting of animal manure, manure compost biofilter for odorous VFAs control, SBR for nitrogen removal, and ASBR for animal wastewater treatment systems considered important for the resource recovery and air quality. Finally, we present an overview for the future needs and current experience of the biological systems engineering for animal manure management and odor control.

  • PDF

Operation of biofilters with different packing material (담체 변화에 따른 Labscale 바이오 필터의 성능 실험)

  • D. Cho;Kwon, Sung-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.331-333
    • /
    • 2003
  • The low-pH biofiltration system in laboratory experiments demonstrate defective performance for treating H2S. When leachate pH was in the range of 1.5 to 4, the biofilters in three different media removed H2S wi th efficiencies greater than 99% while it was treated as a single contaminant. The posibility of using a single-stage low pH biofilter depends on its performance in treating VOCs. During Phase 2, a single-stage biofilter was effective for treating mixtures of H2S and toluene with toluene concentrations below 20ppm and leachate pH between 2 and 3.5. Biofiltration of xylene was ineffective when pH was lower than 1.5. The treatment system acclimated most slowly to benzene, and treatment of benzene was apparently subject to some competive inhibition from xylene and toluene. However. co-treatment was possible after some acclimation time. Xylene was not easily treated, with higher elimination capacities and no sign of competitive inhibition.

  • PDF

Effects of Gas Retention Time and Filling Depth of a Compost Biofilter on Removal of Vapor Phase Gasoline (가솔린휘발가스 제거를 위한 퇴비 바이오필터의 체류시간 및 충전깊이의 영향)

  • Namkoong, Wan;Park, Joon-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.3
    • /
    • pp.124-130
    • /
    • 2000
  • This study was conducted to evaluate effects of gas retention time and filling depth of a compost-based biofilter on removal of vapor phase gasoline and to suggest operational improving method. Gas empty bed retention times(EBRTs) were 4, 10, and 20 minutes, respectively. EBRT of over 10 minutes was required in both cases of TPH(total petroleum hydrocarbons) and BTEK (bezene, toluene, ethylbenzene, and xylene). Filling depths were 25, 50, 75, and 100cm, respectively. To treat gasoline TPH effectively, controlling other operational parameters including EBRT and gas loading rate was more important than increasing filling depth simply. 1m filling depth was sufficient in treating BTEX without controlling other operational parameters greatly.

  • PDF

Biofiltration of Gaseous Toluene Using Activated Carbon Containing Polyurethane Foam Media (활성탄 함유 폴리우레탄 담체를 사용하는 바이오필터에 의한 가스상 톨루엔의 처리)

  • Amarsanaa Altangerel;Shin Won-Sik;Choi Jeong-Hak;Choi Sang-June
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.513-525
    • /
    • 2006
  • In recent decades, biofiltration has been widely accepted for the treatment of contaminated air stream containing low concentration of odorous compounds or volatile organic compounds (VOCs). In this study, conventional biofilters packed with flexible synthetic polyurethane (PU) foam carriers were operated to remove toluene from a contaminated air stream. PU foams containing various amounts of pulverized activated carbon (PAC) were synthesized for the biofilter media and tested for toluene removal. Four biofilter columns were operated for 60 days to remove gaseous toluene from a contaminated air stream. During the biofiltration experiment, inlet toluene concentration was in the range of 0-150 ppm and EBRT (i.e., empty bed residence time) was kept at 26-42 seconds. Pressure drop of the biofilter bed was less than 3 mm $H_2O/m$ filter bed. The maximum removal capacity of toluene in the biofilters packed with PU-PAC foam was in the order of column II (PAC=7.08%) > column III (PAC=8.97%) > column I (PAC=4.95%) > column IV (PAC=13.52%), while the complete removal capacity was in the order of column II > column I > column III > column IV. The better biofiltration performance in column II was attributed to higher porosity providing favorable conditions for microbial growth. The results of biodegradation kinetic analysis showed that PU-PAC foam with 7.08% of PAC content had higher maximum removal rate ($V_m$=14.99 g toluene/kg dry material/day) than the other PU-PAC foams. In overall, the performance of biofiltration might be affected by the structure and physicochemical properties of PU foam induced by PAC content.