• 제목/요약/키워드: biofilms

검색결과 261건 처리시간 0.023초

유가공 산업에서의 바이오필름 형성과 제어관리: 총설 (The Formation and Control of the Biofilm in Dairy Industry: A Review)

  • 정용화;정대학;백승천
    • Journal of Dairy Science and Biotechnology
    • /
    • 제33권2호
    • /
    • pp.139-151
    • /
    • 2015
  • Biofilms are aggregates of microorganisms present in a self-produced matrix of extracellular polymeric substance (EPS) adhered to a surface. Formation of a biofilm in the environment on farms and in dairy plants comprises several stages: attachment, growth (development), and detachment. Generally, biofilms are harmful to humans and need to be controlled. Stainless steel (SS) surfaces that are untreated or are scratched comprise substrata that are especially vulnerable to biofilm formation; therefore, SS surfaces should be polished and sanitized. Various approaches are available for the destruction of biofilms; cleaning-in-place (CIP) is the method mainly used in dairy plants. Further study on optimum detergents, cleaning conditions, and methods for this purpose is needed.

  • PDF

Effects of Microbial Communication on The Growth of Periodontopathogens

  • Lee, Chung-Koo;Baek, Dong-Heon
    • International Journal of Oral Biology
    • /
    • 제35권4호
    • /
    • pp.197-202
    • /
    • 2010
  • Most oral microorganisms exist as biofilms which initiate formation via the attachment of an early colonizer to host proteins on the tooth surface. Fusobacterium nucleatum act as a bridge between early and late colonizers. Dental biofilms eventually comprise dental pathogens such as Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia. To evaluate the effects of mutual interactions between oral bacteria on the growth of biofilms, periodontopathogens were co-cultured with a $0.4\;{\mu}m$ barrier. Streptococcus gordonii inhibited the growth of F. nucleatum and periodontopathogens. However, F. nucleatum, P. gingivalis and T. denticola activated the growth of other bacteria. A co-culture system of early and late colonizers could be a useful tool to further understand bacterial interactions during the development of dental biofilm.

Effect of Sodium Hypochlorite on the Biofilms of Aeromonas hydrophila, Streptococcus mutans, and Yersinia enterocolitica

  • Youngseok Ham;Han-Saem Park;Minjun Kim;Tae-Jong Kim
    • 한국미생물·생명공학회지
    • /
    • 제51권1호
    • /
    • pp.32-36
    • /
    • 2023
  • In this study, the effect of sodium hypochlorite on biofilm removal was evaluated using three bacterial strains; Aeromonas hydrophila, Streptococcus mutans, and Yersinia enterocolitica. For maximum biofilm removal in 10 min, sodium hypochlorite is required at 1.65, 0.83, and 0.41 g/l for A. hydrophila, S. mutans, and Y. enterocolitica, respectively. Resistance to sodium hypochlorite was increased by the biofilms of all three tested strains, while the change in bactericidal activity according to sodium hypochlorite concentration was strain-specific. Therefore, we aimed to determine the effective concentration of sodium hypochlorite required for hygiene, considering that higher concentrations are needed to remove biofilms than to kill cells.

The effect of using nanoparticles in bioactive glass on its antimicrobial properties

  • Maram Farouk Obeid;Kareim Moustafa El-Batouty;Mohammed Aslam
    • Restorative Dentistry and Endodontics
    • /
    • 제46권4호
    • /
    • pp.58.1-58.8
    • /
    • 2021
  • Objectives: This study addresses the effect of using nanoparticles (np) on the antimicrobial properties of bioactive glass (BAG) when used in intracanal medicaments against Enterococcus faecalis (E. faecalis) biofilms. Materials and Methods: E. faecalis biofilms, grown inside 90 root canals for 21 days, were randomly divided into 4 groups according to the antimicrobial regimen followed (n = 20; BAG-np, BAG, calcium hydroxide [CaOH], and saline). After 1 week, residual live bacteria were quantified in terms of colony-forming units (CFU), while dead bacteria were assessed with a confocal laser scanning microscope. Results: Although there was a statistically significant decrease in the mean CFU value among all groups, the nano-group performed the best. The highest percentage of dead bacteria was detected in the BAG-np group, with a significant difference from the BAG group. Conclusions: The reduction of particle size and use of a nano-form of BAG improved the antimicrobial properties of the intracanal treatment of E. faecalis biofilms

Molecular and Ecological Analyses of Microbial Community Structures in Biofilms of a Full-Scale Aerated Up-Flow Biobead Process

  • Ju, Dong-Hun;Choi, Min-Kyung;Ahn, Jae-Hyung;Kim, Mi-Hwa;Cho, Jae-Chang;Kim, Tae-Sung;Kim, Tae-San;Seong, Chi-Nam;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.253-261
    • /
    • 2007
  • Molecular and cultivation techniques were used to characterize the bacterial communities of biobead reactor biofilms in a sewage treatment plant to which an Aerated Up-Flow Biobead process was applied. With this biobead process, the monthly average values of various chemical parameters in the effluent were generally kept under the regulation limits of the effluent quality of the sewage treatment plant during the operation period. Most probable number (MPN) analysis revealed that the population of denitrifying bacteria was abundant in the biobead #1 reactor, denitrifying and nitrifying bacteria coexisted in the biobead #2 reactor, and nitrifying bacteria prevailed over denitrifying bacteria in the biobead #3 reactor. The results of the MPN test suggested that the biobead #2 reactor was a transition zone leading to acclimated nitrifying biofilms in the biobead #3 reactor. Phylogenetic analysis of 16S rDNA sequences cloned from biofilms showed that the biobead #1 reactor, which received a high organic loading rate, had much diverse microorganisms, whereas the biobead #2 and #3 reactors were dominated by the members of Proteobacteria. DGGE analysis with the ammonia monooxygenase (amoA) gene supported the observation from the MPN test that the biofilms of September were fully developed and specialized for nitrification in the biobead reactor #3. All of the DNA sequences of the amoA DGGE bands were very similar to the sequence of the amoA gene of Nitrosomonas species, the presence of which is typical in the biological aerated filters. The results of this study showed that organic and inorganic nutrients were efficiently removed by both denitrifying microbial populations in the anaerobic tank and heterotrophic and nitrifying bacterial biofilms well-formed in the three functional biobead reactors in the Aerated Up-Flow Biobead process.

Development of Candida albicans Biofilms Is Diminished by Paeonia lactiflora via Obstruction of Cell Adhesion and Cell Lysis

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권3호
    • /
    • pp.482-490
    • /
    • 2018
  • Candida albicans infections are often problematic to treat owing to antifungal resistance, as such infections are mostly associated with biofilms. The ability of C. albicans to switch from a budding yeast to filamentous hyphae and to adhere to host cells or various surfaces supports biofilm formation. Previously, the ethanol extract from Paeonia lactiflora was reported to inhibit cell wall synthesis and cause depolarization and permeabilization of the cell membrane in C. albicans. In this study, the P. lactiflora extract was found to significantly reduce the initial stage of C. albicans biofilms from 12 clinical isolates by 38.4%. Thus, to assess the action mechanism, the effect of the P. lactiflora extract on the adhesion of C. albicans cells to polystyrene and germ tube formation was investigated using a microscopic analysis. The density of the adherent cells was diminished following incubation with the P. lactiflora extract in an acidic medium. Additionally, the P. lactiflora-treated C. albicans cells were mostly composed of less virulent pseudohyphae, and ruptured debris was found in the serum-containing medium. A quantitative real-time PCR analysis indicated that P. lactiflora downregulated the expression of C. albicans hypha-specific genes: ALS3 by 65% (p = 0.004), ECE1 by 34.9% (p = 0.001), HWP1 by 29.2% (p = 0.002), and SAP1 by 37.5% (p = 0.001), matching the microscopic analysis of the P. lactiflora action on biofilm formation. Therefore, the current findings demonstrate that the P. lactiflora ethanol extract is effective in inhibiting C. albicans biofilms in vitro, suggesting its therapeutic potential for the treatment of biofilm-associated infections.

Phenylpropanoids of Plant Origin as Inhibitors of Biofilm Formation by Candida albicans

  • Raut, Jayant Shankar;Shinde, Ravikumar Bapurao;Chauhan, Nitin Mahendra;Karuppayil, Sankunny Mohan
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권9호
    • /
    • pp.1216-1225
    • /
    • 2014
  • Biofilm-related infections of Candida albicans are a frequent cause of morbidity and mortality in hospitalized patients, especially those with immunocompromised status. Options of the antifungal drugs available for successful treatment of drug-resistant biofilms are very few, and as such, new strategies need to be explored against them. The aim of this study was to evaluate the efficacy of phenylpropanoids of plant origin against planktonic cells, important virulence factors, and biofilm forms of C. albicans. Standard susceptibility testing protocol was used to evaluate the activities of 13 phenylpropanoids against planktonic growth. Their effects on adhesion and yeast-to-hyphae morphogenesis were studied in microplate-based methodologies. An in vitro biofilm model analyzed the phenylpropanoid-mediated prevention of biofilm development and mature biofilms using XTT-metabolic assay, crystal violet assay, and light microscopy. Six molecules exhibited fungistatic activity at ${\leq}0.5mg/ml$, of which four were fungicidal at low concentrations. Seven phenylpropanoids inhibited yeast-to-hyphae transition at low concentrations (0.031-0.5 mg/ml), whereas adhesion to the solid substrate was prevented in the range of 0.5-2 mg/ml. Treatment with ${\leq}0.5mg/ml$ concentrations of at least six small molecules resulted in significant (p < 0.05) inhibition of biofilm formation by C. albicans. Mature biofilms that are highly resistant to antifungal drugs were susceptible to low concentrations of 4 of the 13 molecules. This study revealed phenylpropanoids of plant origin as promising candidates to devise preventive strategies against drug-resistant biofilms of C. albicans.

항균제를 이용한 알루미늄 표면에 생물막 형성 억제효과 분석 (Study of Effectiveness of Antimicrobial on Restraining Formation of Biofilms on the Surface of Aluminum)

  • 박상준;오영환;조보연;최미연;현민우;정재현;김의용
    • KSBB Journal
    • /
    • 제30권2호
    • /
    • pp.69-76
    • /
    • 2015
  • The antibacterial activity of a antimicrobial (organic synthetic or organic natural material) on the bacteria (Bacillus megaterium, Arthrobacter oxydans, Micrococcus luteus, Methylobacterium aquaticum) detected in the automobiles showed 99.9% bacteria decrease rate within 30 min of being in contact with the tested bacteria culture. The MIC of the organic synthetic material based antimicrobials and the organic natural material based antimicrobial on the bacteria were 31~500 mg/mL and 8~250 mg/mL, respectively. The bacteria and biofilms were formed on the surface of aluminum after 5 ~8 days in the case of addition of the organic synthetic material based antimicrobial to the MIC values for the tested bacteria culture. On the other hand, there was no proliferation of bacteria and formation of biofilms on the surface of aluminum even after 30 days in the case of addition of the organic natural material based antimicrobial to the MIC values for the tested bacteria culture. As a result, the organic natural material based antimicrobial was confirmed to be more excellent effect of inhibition of bacterial proliferation and restraint of biofilms formation than the organic synthetic material based antimicrobial.

아세트산 처리 황다랑어(Thunnus albacares) 껍질 유래 젤라틴으로 제조한 바이오필름의 물리적 특성 (Physical Properties of Biofilm Manufactured from Gelatin of Yellowfin Tuna Thunnus albacares Skin Treated with Acetic Acid)

  • 김주연;김도형;김선봉
    • 한국수산과학회지
    • /
    • 제44권6호
    • /
    • pp.591-596
    • /
    • 2011
  • The present study examined the physical properties of biofilms manufactured from yellowfin tuna Thunnus albacares skin gelatin with the aim of developing a biofilm from fisheries by-products to replace mammalian sources. The physical properties of biofilms from yellowfin tuna gelatin were compared with those of biofilms from porcine gelatin. The yellowfin tuna gelatin biofilm exhibited higher tensile strength (69.08 MPa) and greater elongation (14.32%) than did porcine gelatin biofilm (50.50 MPa and 10.21%, respectively). The ${\Delta}E$ and YI (yellowness index) Huntercolor values of yellowfin tuna gelatin biofilm were three-fold and 15-fold higher, respectively, than values for porcine gelatin biofilm. The opacity value of yellowfin tuna gelatin biofilm was higher than that of porcine gelatin biofilm. The stability against water of yellowfin tuna gelatin biofilm was lower than that of porcine gelatin biofilm at pH 3 to pH 11. Thermogravimetric analysis (TGA) indicated that the thermal stability of the biofilms was about $270^{\circ}C$ for porcine gelatin biofilm and about $250^{\circ}C$ for yellowfin tuna gelatin biofilm.

An in vitro model of Fusobacterium nucleatum and Porphyromonas gingivalis in single- and dual-species biofilms

  • Tavares, Livia Jacovassi;Klein, Marlise Inez;Panariello, Beatriz Helena Dias;de Avila, Erica Dorigatti;Pavarina, Ana Claudia
    • Journal of Periodontal and Implant Science
    • /
    • 제48권1호
    • /
    • pp.12-21
    • /
    • 2018
  • Purpose: The goal of this study was to develop and validate a standardized in vitro pathogenic biofilm attached onto saliva-coated surfaces. Methods: Fusobacterium nucleatum (F. nucleatum) and Porphyromonas gingivalis (P. gingivalis) strains were grown under anaerobic conditions as single species and in dual-species cultures. Initially, the bacterial biomass was evaluated at 24 and 48 hours to determine the optimal timing for the adhesion phase onto saliva-coated polystyrene surfaces. Thereafter, biofilm development was assessed over time by crystal violet staining and scanning electron microscopy. Results: The data showed no significant difference in the overall biomass after 48 hours for P. gingivalis in single- and dual-species conditions. After adhesion, P. gingivalis in single- and dual-species biofilms accumulated a substantially higher biomass after 7 days of incubation than after 3 days, but no significant difference was found between 5 and 7 days. Although the biomass of the F. nucleatum biofilm was higher at 3 days, no difference was found at 3, 5, or 7 days of incubation. Conclusions: Polystyrene substrates from well plates work as a standard surface and provide reproducible results for in vitro biofilm models. Our biofilm model could serve as a reference point for studies investigating biofilms on different surfaces.