• Title/Summary/Keyword: biofilms

Search Result 258, Processing Time 0.027 seconds

Isolation and Characterization of Biofouling Bacteria in Ultra-high Purity Water Used in the Semiconductor Manufacturing Process

  • Kim, In-Seop;Lee, Kye-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.554-558
    • /
    • 2000
  • Bacteria were isolated and identified from an advanced high-purity water system that supplies ultra-high purity water (UHPW) for 16-megabyte DRAM semiconductor manufacturing. Scanning electron microscopic and microbiological observations revealed that the primary source of the bacteria isolated from the UHPW was detached cells from biofilms developed on the pipe wall through which the UHPW, a man-made and extremely nutrient poor environment, was passing. About 63-65% of the bacteria isolated from the UHPW and the pipe wall were Gram-positive, whereas only 10% of the bacteria isolated from the feed water were Gram-positive. The of Gram-positive bacteria and seven genera of Gram-negative bacteria. Strains of the UHPW bacteria effectively adhered to and formed a biofilm on the surface of polyvinyl chloride (PVC) pipe.

  • PDF

Effects of Electron Acceptor and Electron Donor on Biodegradation of $CCl_4$by Biofilms (Electron Donor 및 Electron Acceptor의 농도가 생물활성대형성 및 유해폐기물 처리에 미치는 영향)

  • Bae, Woo-Keun;Bruce E. Rittmann
    • Environmental Analysis Health and Toxicology
    • /
    • v.6 no.3_4
    • /
    • pp.149-154
    • /
    • 1991
  • Biodegradation of carbon tetrachloride (CTC) in denitrifying and aerobic columns was investigated under various conditions of electron-acceptor and electron-donor availability. CTC removal increased when the electron-acceptor (nitrate) injection was stopped in the denitrifying column; however, CTC remova1 decreased when electron donor (acetate) was deleted in the denitrifying and the aerobic column. Small fractions of the CTC removed appeared as chloroform, indicating that reductive dechlorination of CTC was occurring. The results from the denitrifying column support the hypothesis that CTC behaves as an electron acceptor that competes for the pool of available electrons inside the bacterial cells.

  • PDF

Initial Bacterial Groups in the Development of Biofilm in Drinking Water (수돗물속 생물막 형성의 초기 세균)

  • Lee, Dong-Geun
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.428-433
    • /
    • 2007
  • To clarify the pioneer group in the development of biofilms in high chlorine residual water, a semi-pilot model system was operated and 16S rDNA V3 targeted PCR-DGGE was submitted. Biofilm formation occurred rapidly in the model of a drinking water distribution system. It reached $10^3\;CFU/cm^2$ or more on the surface of stainless steel, PVC, and galvanized iron in chlorinated (1.0 mg/l) water within a week. Within a week, uncultured Proteobacteria- and Bacillales group-like sequences were detected and Sphingomonas-like sequences were identified from all season and all pipe materials tested. Hence Sphingomonas species were regarded as the potential pioneer group in the development of biofilm in drinking water and this results would be useful for the prevention of biofilm formation and safety of drinking tap water.

Development of Parallel TBR system for the treatment of Trichloroethylene by Burkholderia cepacia G4

  • Lee, Eun-Yeol;Ye, Byeong-Dae;Park, Seong-Hun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.512-515
    • /
    • 2000
  • A parallel reactor system which is consisted of two trickle bed reactors (TBR) was developed for the biodegradation of trichloroethylene (TCE) in waste gas stream. The reactor were packed with porous ceramic materials and Burkholderia cepacia G4 was inoculated to form biofilms. Each reactor was operated alternatively in TCE degradation or reactivation mode, and the effect of switching time on TBR performance was investigated. The MO (monooxygenase) activity during the TCE transformation decreased below 10 % within 24 hr, but could be recovered to the initial high level within 10 hr after supplying the reactivation medium supplemented with phenol as a carbon source. This shows that the parallel TBR system has a great potential for the long-term stable treatment of TCE.

  • PDF

Isolation of Protease-Producing Arctic Marine Bacteria

  • Lee, Yoo-Kyung;Sung, Ki-Cheol;Yim, Joung-Han;Park, Kyu-Jin;Chung, Ho-Sung;Lee, Hong-Kum
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.215-219
    • /
    • 2005
  • We isolated and identified three protease-producing bacteria that had inhabited the region around the Korean Arctic Research Station Dasan located at Ny-Alesund, Svalbard, Norway $(79^{\circ}N,\;12^{\circ}E)$. Biofilms were collected from the surface of a floating pier and from dead brown algae in a tide pool near the seashore. The biofilm samples were transported to the Korea Polar Research Institute (KOPRI) under frozen conditions, diluted in sterilized seawater, and cultured on Zobell agar plates with 1% skim milk at $10^{\circ}C$. Three clear zone forming colonies were selected as protease-producing bacteria. Phylogenetic analysis based on 16S rDNA sequences showed that these three stains shared high sequence similarities with Pseudoalteromonas elyakovii, Exiguobacterium oxidotofewm Pseudomonas jessenii, respectively. We expect these Arctic bacteria may be used to develop new varieties of protease that are active at low temperatures.

Biofilm-forming ability and adherence to poly-(methyl-methacrylate) acrylic resin materials of oral Candida albicans strains isolated from HIV positive subjects

  • Uzunoglu, Emel;Bicer, Arzu Zeynep Yildirim;Dolapci, Istar;Dogan, Arife
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.1
    • /
    • pp.30-34
    • /
    • 2014
  • PURPOSE. This study evaluated the adhesion to acrylic resin specimens and biofilm formation capability of Candida albicans strains isolated from HIV positive subjects' oral rinse solutions. MATERIALS AND METHODS. The material tested was a heat-cured acrylic resin (Acron Duo). Using the adhesion and crystal violet assays, 14 oral Candida albicans isolated from HIV-positive subjects and 2 references Candida strains (C. albicans ATCC 90028 and C. albicans ATCC 90128) were compared for their biofilm production and adhesion properties to acrylic surfaces in vitro. RESULTS. There were no significant differences in adhesion (P=.52) and biofilm formation assays (P=.42) by statistical analysis with Mann-Whitney test. CONCLUSION. Denture stomatitis and increased prevalence of candidal carriage in HIV infected patients is unlikely to be related to the biofilm formation and adhesion abilities of C. albicans to acrylic resin materials.

Isolation and Identification of Cyanobacteria of the Cultural Heritages in the Gwanschoksa, Nonsan City in Korea (논산 관촉사 석조문화재에 분포하는 남세균의 분리 및 동정에 관한 연구)

  • Oh, In-Hye
    • The Journal of Natural Sciences
    • /
    • v.19 no.1
    • /
    • pp.27-35
    • /
    • 2008
  • The importance of microbial activity in the alteration and deterioration of stone and concrete walls has been frequently neglected. Organisms present on stone monuments can include photolithoautotrophs, such as algae, cyanobacteria, mosses, and higher plants. Because of their ability to survive repeated drying and rehydration cycles and high UV levels, the cyanobacteria are particularly important on exposed surfaces. The cyanobactria distributed on the surface of the stone cultural heritages in Gwanschoksa, Nonsan city were investigated. Chlorococcus sp. Aanabaena sp. Gloeocapsa sp Lyngbya sp. Stigomena sp. Synechocystis sp were identified. Haplaosiphon fontinalis and Stigonema turfaceum, which were not recoded is Korea, were also identified. Cells often have thick pigmented sheath in dry, sun-exposed environment and shorter filament, which can be different than that in aquatic systems. Special attention should be paid to production of an adequate DNA database in order to accelerate the rate at which information on the species present in biofilms become available.

  • PDF

Anti-Biofilm Activity of Cell-Free Supernatant of Saccharomyces cerevisiae against Staphylococcus aureus

  • Kim, Yeon Jin;Yu, Hwan Hee;Park, Yeong Jin;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1854-1861
    • /
    • 2020
  • Staphylococcus aureus is one of the most common microorganisms and causes foodborne diseases. In particular, biofilm-forming S. aureus is more resistant to antimicrobial agents and sanitizing treatments than planktonic cells. Therefore, this study aimed to investigate the anti-biofilm effects of cell-free supernatant (CFS) of Saccharomyces cerevisiae isolated from cucumber jangajji compared to grapefruit seed extract (GSE). CFS and GSE inhibited and degraded S. aureus biofilms. The adhesion ability, auto-aggregation, and exopolysaccharide production of CFS-treated S. aureus, compared to those of the control, were significantly decreased. Moreover, biofilm-related gene expression was altered upon CFS treatment. Scanning electron microscopy images confirmed that CFS exerted anti-biofilm effects against S. aureus. Therefore, these results suggest that S. cerevisiae CFS has anti-biofilm potential against S. aureus strains.

Inhibition of Biofilm Formation in Yersinia enterocolitica by Edible Plant Extracts Including Polygoni Multiflori Radix

  • Youngseok, HAM;Tae-Jong, KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.448-457
    • /
    • 2022
  • Yersinia enterocolitica, which causes yersiniosis, is a bacterium that produces biofilms effectively. The inhibition of biofilm formation provides a method for preventing infections with Y. enterocolitica. In this study, the inhibitory activity of Y. enterocolitica biofilm formation was investigated in a library of 140 edible plant methanol extracts including forest products. It was identified that the biofilm formation could be inhibited by 12 extracts of plants, Agastachis Herba, Agrimoniae Herba, Diospyros kaki leaves, Elsholtziae Herba, Ginkgonis Semen, Lycopi Herba, Melonis Pedicellus, Menthae Herba, Mori Radicis Cortex, Polygoni Multiflori Radix, Prunellae Spica, and Schizonepetae Spica. After changing the solvent to ethanol and water, the greatest inhibition of biofilm formation was produced by a 50% ethanol extract of Polygoni Multiflori Radix. A method to effectively prevent yersiniosis can be developed using the edible plant extracts identified in this study.

An Experimental Study of Non-Electrolysis Anti-Microfouling Technology Based on Bioelectric Effect

  • Young Wook Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.172-179
    • /
    • 2023
  • Biofouling initiated by biofilm (slime) formation is a key challenge for practical ocean engineering and construction. This study evaluated a new anti-biofilm technology using bioelectricity. The anti-microfouling electrical technology is based on the principles of the bioelectric effect, known as the application of an electrostatic force for biofilm removal. Previously, the electricity was optimized below 0.82V to avoid electrolysis, which can prevent the production of biocides. A test boat comprised of microelectronics for electrical signal generation with electrodes for an anti-biofouling effect was developed. The tests were conducted in the West Sea of Korea (Wangsan Marina, Incheon) for three weeks. The surface biofouling was quantified. A significant reduction of fouling was observed under the bioelectric effect conditions, with approximately 30% enhanced prevention of fouling progress (P<0.05). This technology can be an alternative eco-friendly technique for anti-microfouling that can be applied for canals, vessels, and coastal infrastructure because it does not induce electrolysis.