• 제목/요약/키워드: biofilm reactor

검색결과 191건 처리시간 0.019초

유기물 부하가 Anaerobic Hybrid Reactor 운전효율에 미치는 영향 (Effect of Organic Loading Rate on the Performance of Anaerobic Hybrid Reactor)

  • 신창하;오대양;김태훈;박주양
    • 상하수도학회지
    • /
    • 제26권4호
    • /
    • pp.497-502
    • /
    • 2012
  • Anaerobic Digestion Process is evaluated as efficient wastewater treatment process with the removal of high concentrations of organic waste and production of biogas. This study was performed using hybrid anaerobic hybrid reactor (AHR) which consists of anaerobic sludge blanket (UASB) and biofilm-coated filter media was applied for Palm Oil Mill Effluent (POME) for 80 days to know optimum removal efficiency and production of biogas by comparing each part which divided changing Organic Loading Rate (OLR). As a result of this study, the removal efficiency was 90.4 % when the organic loading rate of influent was 15 kg COD/$m^3$/day. Since organic loading rate was up to 20 kg COD/$m^3$/day, the removal rate declined 80.7%. Over loading of influent caused sludge expansion and overproduction of microorganism. Amount of biogas was collected 82.3 L/day and pH was remained 6.9 constantly with balance of alkalinity.

생물학적 수소생산을 위한 Trickling Bed Biofilter에서의 친수성과 소수성 담체의 영향 (Effect of Hydrophilic- and Hydrophobic-Media on the Fermentative Hydrogen Production in Trickling Bed Biofilter)

  • 전병승;이선미;김용환;채희정;상병인
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.465-469
    • /
    • 2006
  • Two mesophilic trickling bed bioreactors filled with two different types of media, hydrophilic- and hydrophobic-cubes, were designed and tested for hydrogen production via anaerobic fermentation of sucrose. Each reactor consisted of a column packed with polymeric cubes and inoculated with heat-treated sludge obtained from anaerobic digestion tank. A defined medium containing sucrose was fed with changing flow rate into the capped reactor, hydraulic retention time and recycle rate. Hydrogen concentrations in gas-phase were constant, averaging 40% for all conditions tested. Hydrogen production rates increased up to $10.5 L{\cdot};h^{-1}{\cdot}L^{-1}$ of reactor when influent sucrose concentrations and recycle rates were varied. Hydrophobic media provided higher value of hydrogen production rate than hydrophilic media at the same operation conditions. No methane was detected when the reactor was under a normal operation. The major fermentation by-products in the liquid effluent of the both trickling biofilters were acetate and butyrate. The reactor filled with hydrophilic media became clogged with biomass and bio gas, requiring manual cleaning of the system, while no clogging occurred in the reactor with hydrophobic media. In order to make long-term operation of the reactor filled with hydrophilic media feasible, biofilm accumulation inside the media in the reactor with hydrophilic media and biogas produced from the reactor will need to be controlled through some process such as periodical backwashing or gas-purging. These tests using trickling bed biofilter with hydrophobic media demonstrate the feasibility of the process to produce hydrogen gas in a trickle-bed type of reactor. A likely application of this reactor technology could be hydrogen gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

  • PDF

Dechlorination of High Concentrations of Tetrachloroethylene Using a Fixed-bed Reactor

  • Chang, Young-C.;Park, Chan-Koo;Jung, Kweon;Kikuchi, Shintaro
    • 한국환경보건학회지
    • /
    • 제36권4호
    • /
    • pp.323-336
    • /
    • 2010
  • We evaluated the properties of a fixed-bed column reactor for high-concentration tetrachloroethylene (PCE) removal. The anaerobic bacterium Clostridium bifermentans DPH-1 was able to dechlorinate PCE to cis-1,2-dichloroethylene (cDCE) via trichloroethylene (TCE) at high rates in the monoculture biofilm of an upflow fixed-bed column reactor. The first-order reaction rate of C. bifermentans DPH-1 was relatively high at $0.006\;mg\;protein^{-1}{\cdot}l{\cdot}h^{-1}$, and comparable to rates obtained by others. When we gradually raised the influent PCE concentration from $30\;{\mu}M$ to $905\;{\mu}M$, the degree of PCE dechlorination rose to over 99% during the operation period of 2,000 h. In order to maintain efficiency of transformation of PCE in this reactor system, more than 6 h hydraulic retention time (HRT) is required. The maximum volumetric dechlorination rate of PCE was determined to be $1,100\;{\mu}mol{\cdot}d^{-1}l$ of reactor $volume^{-1}$, which is relatively high compared to rates reported previously. The results of this study indicate that the PCE removal performance of this fixed-bed reactor immobilized mono-culture is comparable to that of a fixed-bed reactor mixture culture system. Furthermore, our system has the major advantage of a rapid (5 days) start-up time for the reactor. The flow characteristics of this reactor are intermediate between those of the plug-flow and complete-mix systems. Biotransformation of PCE into innocuous compounds is desirable; however, unfortunately cDCE, which is itself toxic, was the main product of PCE dechlorination in this reactor system. In order to establish a system for complete detoxification of PCE, co-immobilization of C. bifermentans DPH-1 with other bacteria that degrade cDCE aerobically or anaerobically to ethene or ethane may be effective.

상수원수 전처리 시 효율향상을 위한 생물여과 반응기 위치선정 (Evaluation of Biological Aerated Filter Position on Water Treatment Processes for Water Quality Improvement)

  • 최형주;최동호;배우근
    • 대한환경공학회지
    • /
    • 제28권6호
    • /
    • pp.677-686
    • /
    • 2006
  • 본 연구의 목적은 기존 정수처리 공정에 하향류식 호기성 생물여과 공정을 설치하였을 때 적정 위치를 선정하고자, 응집/침전 전(Mode A)에 BAF 공정을 설치하였을 때와 응집/침전 후(Mode B)에 BAF 공정을 설치하였을 때의 부유성 입자물질, 유기물, 암모니아성 질소 제거효율을 비교하고자 하였다. 운전결과 입자성물질(turbidity, SS)의 제거효율은 모든 EBCT에 걸쳐 Mode A, B 모두 약 80% 정도의 효율을 보였으며 Mode A에서의 효율이 다소 높은 것으로 조사되었다. 유기물질($BOD_5$) 제거 및 질산화 효율도 90% 이상으로 나타났으며 Mode A에서 의 효율이 더 좋은 것으로 나타났다. 생물막 두께 및 양은 EBCT가 증가할수록 커졌으며, 기질이 유입되는 상부에서 하부에 비해 약 30% 이상 미생물량이 많았다. 비산소소비속도(SOUR)는 기질이 유입되는 반응기 상부, Mode A에서 증가하는 경향을 나타내었으며 약품주입량 비교 시 Mode A가 경제적인 것으로 나타났다. 기존상수처리공정과 Mode A에 대한 경제성 분석결과 연간 응집제를 67%, 염소주입량을 95% 가량 절감할 것으로 조사되었다.

Nitrogen Removal from Milking Center Wastewater via Simultaneous Nitrification and Denitrification Using a Biofilm Filtration Reactor

  • Won, Seung-Gun;Jeon, Dae-Yong;Kwag, Jung-Hoon;Kim, Jeong-Dae;Ra, Chang-Six
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권6호
    • /
    • pp.896-902
    • /
    • 2015
  • Milking center wastewater (MCW) has a relatively low ratio of carbon to nitrogen (C/N ratio), which should be separately managed from livestock manure due to the negative impacts of manure nutrients and harmful effects on down-stream in the livestock manure process with respect to the microbial growth. Simultaneous nitrification and denitrification (SND) is linked to inhibition of the second nitrification and reduces around 40% of the carbonaceous energy available for denitrification. Thus, this study was conducted to find the optimal operational conditions for the treatment of MCW using an attached-growth biofilm reactor; i.e., nitrogen loading rate (NLR) of 0.14, 0.28, 0.43, and $0.58kg\;m^{-3}\;d^{-1}$ and aeration rate of 0.06, 0.12, and $0.24\;m^3\;h^{-1}$ were evaluated and the comparison of air-diffuser position between one-third and bottom of the reactor was conducted. Four sand packed-bed reactors with the effective volume of 2.5 L were prepared and initially an air-diffuser was placed at one third from the bottom of the reactor. After the adaptation period of 2 weeks, SND was observed at all four reactors and the optimal NLR of $0.45kg\;m^{-3}\;d^{-1}$ was found as a threshold value to obtain higher nitrogen removal efficiency. Dissolved oxygen (DO) as one of key operational conditions was measured during the experiment and the reactor with an aeration rate of $0.12\;m^3\;h^{-1}$ showed the best performance of $NH_4-N$ removal and the higher total nitrogen removal efficiency through SND with appropriate DO level of ${\sim}0.5\;mg\;DO\;L^{-1}$. The air-diffuser position at one third from the bottom of the reactor resulted in better nitrogen removal than at the bottom position. Consequently, nitrogen in MCW with a low C/N ratio of 2.15 was successfully removed without the addition of external carbon sources.

무산소/호기생물막반응조와 MF막의 연속처리에 의한 퍼클로레이트와 질산염 제거 (Sequential Anoxic/Aerobic Biofilm Reactors and MF Membrane System for the Removal of Perchlorate and Nitrate)

  • 최혁순
    • 대한환경공학회지
    • /
    • 제35권5호
    • /
    • pp.301-306
    • /
    • 2013
  • 본 연구는 퍼클로레이트($ClO_4{^-}$)와 질산염($NO_3{^-}$)의 직접적인 처리방법으로 무산소/호기생물막반응조와 MF막에 의한 연속처리의 적용 가능성을 조사하였다. 생물막 처리공정은 첫 번째 단계로 퍼클로레이트와 질산염의 제거를 위해 무산소생물막반응조를 이용하였고 두 번째 단계로 이화적 퍼클로레이트와 질산염 환원을 위해 사용된 잔류탄소원의 제거를 위해 호기생물막반응조가 도입되었다. 그리고 마지막 단계로 탁도제거를 위해 중공사형 MF막을 적용하였다. 본 연구에서 102 ${\mu}g/L$ $ClO_4{^-}$와 61.8 mg/L $NO_3{^-}$ (14 mg/L $NO_3$-N)가 유입수로 주입되어 퍼클로레이트는 IC 검출농도 이하(5 ${\mu}g/L$ $ClO_4{^-}$)로 제거되었으며 질산염은 최종 처리수의 농도가 4.4 mg/L $NO_3{^-}$ (1 mg/L $NO_3$-N)로 제거되었다. 탄소원으로 사용된 과잉의 179 mg/L 유입 $CH_3COO^-$는 무산소생물막반응조의 유출수에서 117 mg/L, 호기생물막반응조의 유출수에서 11 mg/L로 감소하였다. 3 NTU의 유입 탁도는 무산소/호기생물막반응조의 유출수에서 1.5와 0.3 NTU였으며 최종 MF막의 유출수에서 0.2 NTU였다. 이 결과는 지표수와 지하수에 포함된 저농도 퍼클로레이트와 질산염 오염의 직접적인 처리방법으로 무산소/호기생물막반응조와 MF막의 연속처리가 적용될 수 있음을 의미하는 것으로 사료된다.

Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification

  • Shin, Jung-Hun;Kim, Byung-Chun;Choi, Okkyoung;Kim, Hyunook;Sang, Byoung-In
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권10호
    • /
    • pp.1670-1679
    • /
    • 2015
  • Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4+-N/m3/d and 0.10-0.21 kg NO3--N/m3/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4+ or NO3- loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.

Comparison of periodontitis-associated oral biofilm formation under dynamic and static conditions

  • Song, Won sub;Lee, Jae-Kwan;Park, Se Hwan;Um, Heung-Sik;Lee, Si Young;Chang, Beom-Seok
    • Journal of Periodontal and Implant Science
    • /
    • 제47권4호
    • /
    • pp.219-230
    • /
    • 2017
  • Purpose: The purpose of this study was to compare the characteristics of single- and dualspecies in vitro oral biofilms made by static and dynamic methods. Methods: Hydroxyapatite (HA) disks, 12.7 mm in diameter and 3 mm thick, were coated with processed saliva for 4 hours. The disks were divided into a static method group and a dynamic method group. The disks treated with a static method were cultured in 12-well plates, and the disks in the dynamic method group were cultured in a Center for Disease Control and Prevention (CDC) biofilm reactor for 72 hours. In the single- and dual-species biofilms, Fusobacterium nucleatum and Porphyromonas gingivalis were used, and the amount of adhering bacteria, proportions of species, and bacterial reduction of chlorhexidine were examined. Bacterial adhesion was examined with scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Results: Compared with the biofilms made using the static method, the biofilms made using the dynamic method had significantly lower amounts of adhering and looser bacterial accumulation in SEM and CLSM images. The proportion of P. gingivalis was higher in the dynamic method group than in the static method group; however, the difference was not statistically significant. Furthermore, the biofilm thickness and bacterial reduction by chlorhexidine showed no significant differences between the 2 methods. Conclusions: When used to reproduce periodontal biofilms composed of F. nucleatum and P. gingivalis, the dynamic method (CDC biofilm reactor) formed looser biofilms containing fewer bacteria than the well plate. However, this difference did not influence the thickness of the biofilms or the activity of chlorhexidine. Therefore, both methods are useful for mimicking periodontitis-associated oral biofilms.

DMR 생물막 공정에서 포기량에 따른 질산화 동시 탈질화 및 영양염류 제거특성 (Effect of Air-flow on Enhanced Nutrient Removal and Simultaneous Nitrification/Denitrification in DMR Biofilm Process)

  • 김일규;이상민;임경호
    • 대한환경공학회지
    • /
    • 제30권10호
    • /
    • pp.992-998
    • /
    • 2008
  • SND 공정은 최근에 하수내 질소제거를 위한 새로운 공법으로 많은 연구가 이루어지고 있다. 이에 본 연구는 무산소조, 혐기조 및 담체를 충진한 포기조로 구성된 DMR(Daiho Microbic Revolution)공정을 이용하여 포기량을 2.0, 1.0, 0.5, 0.4 및 0.2 L/min으로 변화시키면서 영양염류 제거효율과 동시 질산화/탈질 효율을 검토하였다. 유기물제거율은 포기량에 차이를 보이지 않았으며 모든 조건에서 93%의 제거율을 얻을 수 있었다. T-N 제거효율은 포기량이 적어짐에 따라 높아져 0.2 L/min의 조건에서 80%의 효율을 얻었으며, SND효율 또한 각 조건에서 62, 65, 72 및 78%를 나타내어 포기량 조절만으로 높은 질소제거율을 얻을 수 있었다. T-P는 포기량에 따라 75$\sim$96%의 제거율을 보였지만, 0.2 L/min의 조건에서는 2차 인방출이 발생하였다. 0.5 L/min의 조건에서 슬러지의 poly-P함량은 5.08%였으며 소모된 유기물 양과 방출된 인 농도의 비는 0.72 mg P/mg HAc였다.

SHARON/ANAMMOX 결합공정에서 슬러지의 입상화와 특성 (Granulation and Characteristics of Sludges in the Combined SHARON/ANAMMOX Processes)

  • 황인수;민경석
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.300-307
    • /
    • 2006
  • The combined SHARON (Single reactor system for High ammonium Removal Over Nitrite)-ANAMMOX (Anaerobic ammonium oxidation) reactor were operated in mesophilic condition ($35^{\circ}C$). In this study, microbial granulation and characteristics of SHARON and ANAMMOX sludges were investigated using settling test, Scanning Electron Microscopy (SEM) and Fluorescence In Situ Hybridization (FISH). In SHARON reactor, Aerobic granulation with diameter of 1.5~2.5 mm was accomplished but aerobic granulation was weaker than anaerobic granular sludge. Initial seed sludge of ANAMMOX reactor was used as attached media for biofilm growth. ANAMMOX sludge was more compact and rounder rather than seed sludge. Though ANAMMOX sludge has high activity, it has lower settling ability than the seed granule. The color of ANAMMOX sludge was changed from dark to redish brown granular with diameter of 1~2 mm. In FISH of ANAMMOX sludge, high fraction of Candidatus B. stuttgartiensis which paid great role of nitrogen conversion was detected. Also, FISH results reveals that ANAMMOX bacteria inhabit at inner parts near surface, having advantages in utilization of substrates and protection from oxygen inhibition.