• Title/Summary/Keyword: biofilm growth

Search Result 199, Processing Time 0.022 seconds

Biodegradation of Toluene using Biofilms in a Bubble Column Bioreactor

  • Choi, Yong-Bok;Lee, Jang-Young;Kim, Hak-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.41-47
    • /
    • 1995
  • Biodegradation of toluene in liquid effluent stream was carried out using biofilms of Pseudomonas putida formed on celite particles in the bubble column bioreactor. Silicon rubber tubing was installed at the bottom of the bioreactor and liquid toluene was circulated within the tubing. Toluene diffused out of the tube wall and was transferred into the culture broth where degradation by biofilms occurred. The operating variables affecting the formation of biofihns on celite particles were investigated in the bubble column bioreactor, and it was found that formation of bifilm is favored by high dilution rate and supply rate of carbon source which stimulate the growth of initially attached cells. Continuous biodegradation of toluene using biofilms was stablely conducted in the bioreactor for more than one month without any significant fluctuation, showing a removal efficiency higher than 95% at the toluene transfer rate of 1.2 g/L/h.

  • PDF

Optimal Protocol for Enumeration of Attached Bacteria on Glass Slides

  • Lee, Hyun-Sang;Kwon, Kae-Kyoung;Lee, Jong-Ho;Lee, Hong-Kum
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.263-266
    • /
    • 1999
  • In examining bacterial growth on glass surfaces immersed in sea water, we found serious differences between enumeration methods. Therefore, we compared various methods and found sonication and direct count methods were superior to other methods. Since the direct count method was not suitable for long-term investigation, we chose the sonication method and confirmed that sonication periods 8 times for 30 seconds was optimal for the detachment of bacteria from glass surfaces.

  • PDF

Carbon Storage Regulator A (csrA) Gene Regulates Motility and Growth of Bacillus licheniformis in the Presence of Hydrocarbons

  • Angel, Laura Iztacihuatl Serrano;Segura, Daniel;Jimenez, Jeiry Toribio;Barrera, Miguel Angel Rodriguez;Pineda, Carlos Ortuno;Ramirez, Yanet Romero
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.185-192
    • /
    • 2020
  • The global carbon storage regulator (Csr) system is conserved in bacteria and functions as a regulator in the exponential and stationary phases of growth in batch culture. The Csr system plays a role in the central carbon metabolism, virulence, motility, resistance to oxidative stress, and biofilm formation. Although the Csr was extensively studied in Gram negative bacteria, it has been reported only in the control of motility in Bacillus subtilis among Gram positive bacteria. The goal of this study was to explore the role of the csrA gene of Bacillus licheniformis M2-7 on motility and the bacterial ability to use hydrocarbons as carbon source. We deleted the csrA gene of B. licheniformis M2-7 using the plasmid pCsr-L, harboring the spectinomycin cassette obtained from the plasmid pHP45-omega2. Mutants were grown on culture medium supplemented with 2% glucose or 0.1% gasoline and motility was assessed by electron microscopy. We observed that CsrA negatively regulates motility by controlling the expression of the hag gene and the synthesis of flagellin. Notably, we showed the ability of B. licheniformis to use gasoline as a unique carbon source. Our results demonstrated that CsrA is an indispensable regulator for the growth of B. licheniformis M2-7 on gasoline.

Nitrogen Removal from Milking Center Wastewater via Simultaneous Nitrification and Denitrification Using a Biofilm Filtration Reactor

  • Won, Seung-Gun;Jeon, Dae-Yong;Kwag, Jung-Hoon;Kim, Jeong-Dae;Ra, Chang-Six
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.896-902
    • /
    • 2015
  • Milking center wastewater (MCW) has a relatively low ratio of carbon to nitrogen (C/N ratio), which should be separately managed from livestock manure due to the negative impacts of manure nutrients and harmful effects on down-stream in the livestock manure process with respect to the microbial growth. Simultaneous nitrification and denitrification (SND) is linked to inhibition of the second nitrification and reduces around 40% of the carbonaceous energy available for denitrification. Thus, this study was conducted to find the optimal operational conditions for the treatment of MCW using an attached-growth biofilm reactor; i.e., nitrogen loading rate (NLR) of 0.14, 0.28, 0.43, and $0.58kg\;m^{-3}\;d^{-1}$ and aeration rate of 0.06, 0.12, and $0.24\;m^3\;h^{-1}$ were evaluated and the comparison of air-diffuser position between one-third and bottom of the reactor was conducted. Four sand packed-bed reactors with the effective volume of 2.5 L were prepared and initially an air-diffuser was placed at one third from the bottom of the reactor. After the adaptation period of 2 weeks, SND was observed at all four reactors and the optimal NLR of $0.45kg\;m^{-3}\;d^{-1}$ was found as a threshold value to obtain higher nitrogen removal efficiency. Dissolved oxygen (DO) as one of key operational conditions was measured during the experiment and the reactor with an aeration rate of $0.12\;m^3\;h^{-1}$ showed the best performance of $NH_4-N$ removal and the higher total nitrogen removal efficiency through SND with appropriate DO level of ${\sim}0.5\;mg\;DO\;L^{-1}$. The air-diffuser position at one third from the bottom of the reactor resulted in better nitrogen removal than at the bottom position. Consequently, nitrogen in MCW with a low C/N ratio of 2.15 was successfully removed without the addition of external carbon sources.

Characterization of Physiological Properties in Vibrio fluvialis by the Deletion of Oligopeptide Permease (oppA) Gene (Vibrio fluvialis oligopeptide permease (oppA) 유전자 deletion에 의한 생리적 특성)

  • Ahn Sun Hee;Lee Eun Mi;Kim Dong Gyun;Hong Gyoung Eun;Park Eun Mi;Kong In Soo
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.131-135
    • /
    • 2006
  • Oligopeptide is known to be an essential nitrogen nutrient for bacterial growth. Oligopeptide can be transported into cytoplasm by a specific transport system, Opp system. Opp system is composed of five proteins, which are transcribed by an operon. These are responsible for oligopeptide binding protein (OppA), permease (OppB and OppC) and energy generation system (OppD and OppF), respectively. Previously, we isolated the opp operon from Vibrio fluvialis and constructed the oppA mutant by allelic exchange method. In this study, we investigated the growth pattern and biofilm production under the different growth condition. When the cells were cultivated using brain heart infusion(BHI) medium, the wild type was faster than the mutant in growth during the exponential phase. However, it showed that the growth pattern of two strains in M9 medium is very similar. The growth of wild type showed better than that of the mutant grown at pH 8. At pH 7, there was no an obvious difference in growth. After 5 mM $H_2O_2$ was treated to the cells $(OD_{600}=1.2)$, the cell survival was examined. The oppA mutation did not affect in survivability. In the presence of $10{\mu}g/ml$ polymyxin B, the biofilm production of the oppA mutant was higher than that of the wild type.

Competitive Growth and Attachment of Listeria monocytogenes and Lactococcus lactis ssp. lactis ATCC 11454

  • Lee, Shin-Ho;Frank, Joseph-F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.73-77
    • /
    • 1992
  • The effect of a nisin-producing Lactococcus lactis spp. lactis (L. lactis) on the growth and attachment of Listeria monocytogenes Scott A and Brie 1 on stainless steel and their growth in Brain Heart Infusion broth was determined. Viable cells of Listeria decreased rapidly after 9~12 hr of incubation at $21^{\circ}C$ and after 6~9 hr of incubation at $32^{\circ}C$ in the presence of L. lactis. The number of L. monocytogenes Scott A attached to stainless steel in pure culture was $2.5{\times}10^3/\textrm{cm}^2{\;}at{\;}21^{\circ}C{\;}and{\;}2.3{\times}10^3/\textrm{cm}^2{\;}at{\;}32^{\circ}C$ after 48 hr of incubation, but was only $10/\textrm{cm}^2{\;}at{\;}21^{\circ}C{\;}and{\;}1.1{\times}10/\textrm{cm}^2{\;}at{\;}32^{\circ}C$ in the presence of L. lactis. Results from L. monocytogenes strain Brie 1 were similar to those from strain Scott A. The population of L. monocytogenes Scott A which attached to stainless steel with previously adherent L. lactis was $1.8{\times}10^2/\textrm{cm}^2{\;}at{\;}21^{\circ}C{\;}and{\;}8.2{\times}10^2/\textrm{cm}^2{\;}at{\;}32^{\circ}C$, whereas the population attached to sterile stainless steel was $1.2{\times}10^3/\textrm{cm}^2{\;}at{\;}21^{\circ}C{\;}and{\;}2.1{\times}10^2/\textrm{cm}^2{\;}at{\;}32^{\circ}C$. For L. monocytogenes Brie 1, the attached population of the control was $1.6{\times}10^4/\textrm{cm}^2{\;}at{\;}21^{\circ}C{\;}and{\;}3.2{\times}10^2/\textrm{cm}^2{\;}at{\;}32^{\circ}C$, and on stainless steel with adherent L. lactis, it was $1.1{\times}10/\textrm{cm}^2{\;}at{\;}21^{\circ}C{\;}and{\;}6.9{\times}10/\textrm{cm}^2{\;}at{\;}32^{\circ}C$. Surface adherent L. lactis was less inhibitory to attachment of L. monocytogenes on stainless steel than a liquid culture inoculum. Listeria attached to stainless steel survived dry storage for 20 days both in the presence and absence of adherent lactococci.

  • PDF

Efficiency of Nutritive Salts Removal and Algae Growth Inhibition Using a Fibrous Carrier (섬유상 담체를 이용한 영양염류 제거 및 조류 증식 억제에 관한 연구)

  • Park, Sin-Hae;Kang, Dae-Jong;Yang, Kyeong-Soon;Jeon, Soo-Bin;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.257-264
    • /
    • 2015
  • Conventional physicochemical technologies for algae growth inhibition have economical and environmental pollution problems. This study attempted to overcome the problems by nature-friendly biological inhibition technology using fibrous carrier. The experimental results showed that the most effective carrier material, polyester, exhibited the highest biofilm thickness. The removal efficiency for nutrient salts, such as nitrogen and phosphorous, and algae growth inhibition of polyester carrier was 14.59%, 6.36%, and 77%, respectively, which is higher than for control group. These result indicate that the polyester carrier is available in eutrophic lake.

Safety of Temporary Use of Recycled Autoclaved Femoral Components in Infected Total Knee Arthroplasty: Confirming Sterility Using a Sonication Method

  • Park, Hyung-Jin;Kim, Hee-June;Kim, Shukho;Kim, Seong-Min;Mun, Jong-Uk;Kim, Jungmin;Kyung, Hee-Soo
    • Clinics in Orthopedic Surgery
    • /
    • v.10 no.4
    • /
    • pp.427-432
    • /
    • 2018
  • Background: The purpose of this study was to evaluate the usefulness of sonication technique for microbiological diagnosis and the sterility of the recycled autoclaved femoral components from infected total knee arthroplasty (TKA) using a sonication method. Methods: Nineteen femoral implants explanted from patients with infected TKA were sterilized with a standard autoclave method. Standard culture of the fluid before and after sonication of the sterilized implants was performed to detect pathogenic microorganisms. Additional experiments were performed to evaluate the sterility of the recycled implant by inducing artificial biofilm formation. Methicillin-resistant Staphylococcus aureus (MRSA) was inoculated into 10 implants and sterilization in a standard autoclave was performed, and then the fluid was cultured before and after sonication. Results: Two of the 19 sterilized implants were positive for growth of bacteria after sonication, whereas no growth was detected in the cultured fluid from the sterilized implants before sonication. The bacteria were Staphylococcus species in all two cases. In one of 10 implants inoculated with MRSA, the culture was positive for growth of bacteria both before and after sonication. However, Staphylococcus epidermidis was cultured from both occasions and thus this implant was thought to be contaminated. Conclusions: We found sonication for identification of pathogens could be helpful, but this finding should be interpreted carefully because of the possibility of contamination. Sterilization of an infected femoral implant with an autoclave method could be a good method for using the temporary articulating antibiotic spacer in two-stage revision arthroplasty.

Characteristics of Klebsiella pneumoniae exposed to serial antibiotic treatments (항생제 노출에 따른 Klebsiella pneumoniae의 내성 특성)

  • Jung, Lae-Seung;Jo, Ara;Kim, Jeongjin;Ahn, Juhee
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.428-436
    • /
    • 2016
  • The emergence of antibiotic-resistant bacteria has been increased and become a public health concern worldwide. Many bacterial infections can be sequentially treated with different types of antibiotics. Thus, this study was designed to evaluate the changes in survival, antibiotic susceptibility, mutant frequency, ${\beta}$-lactamase activity, biofilm formation, and gene expression in Klebsiella pneumoniae after exposure to sequential antibiotic treatments of ciprofloxacin and meropenem. Treatments include control (CON; no addition), 1/2 MIC ciprofloxacin addition (1/2CIP), 2 MIC ciprofloxacin addition (2CIP), initial 1/2 MIC ciprofloxacin addition followed by 1/2 MIC meropenem (8 h-incubation) and 2 MIC ciprofloxacin (16 h-incubation) (1/2CIP-1/2MER-2CIP), initial 1/2 MIC ciprofloxacin addition followed by 1/2 MIC meropenem (8 h-incubation) and 2 MIC meropenem (16 h-incubation) (1/2CIP-1/2MER-2MER), and initial 1/2 MIC ciprofloxacin addition followed by 2 MIC ciprofloxacin(8 h-incubation) and 2 MIC meropenem(16 h-incubation) (1/2CIP-2CIP-2MER). No growth of K. pneumoniae was observed for the 2CIP throughout the incubation period. The numbers of planktonic cells varied with the treatments (7~10 log CFU/ml), while those of biofilm cells were not significantly different among treatments after 24-h incubation, showing approximately 7 log CFU/ml. Among the sequential treatments, the least mutant frequency was observed at the 1/2CIP-1/2MER-2CIP (14%). Compared to the CON, 1/2CIP-2CIP-2MER decreased the sensitivity of K. pneumoniae to piperacillin, cefotaxime, and nalidixic acid. The highest ${\beta}$-lactamase activity was 22 nmol/min/ml for 1/2CIP-1/2MER-2CIP, while the least ${\beta}$-lactamase activity was 6 nmol/min/ml for 1/2CIP-2CIP-2MER. The relative expression levels of multidrug efflux pump-related genes (acrA, acrB, and ramA) were increased more than 2-fold in K. pneumoniae exposed to 1/2CIP-1/2MER-2MER and 1/2CIP-2CIP-2MER. The results suggest that the sequential antibiotic treatments could change the antibiotic resistance profiles in K. pneumoniae.

Antioxidant Activity of Native Korean Halophyte Extracts and Their Anti-biofilmActivity against Acinetobacter baumannii (한국 자생 염생식물 추출물의 항산화 활성 및 다재내성 Acinetobacter baumannii에 대한 항생물막 활성)

  • Eun Seong Lee;Jeong Woo Park;Ki Hwan Moon;Youngwan Seo
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.1015-1024
    • /
    • 2023
  • Antibiotics have greatly contributed to the treatment and prevention of bacterial diseases in humans, animals, and fish. However, antibiotic misuse has led to the emergence and spread of multidrug-resistant bacteria. In addition to antibiotic discovery research, efforts are being made to combat such multidrug-resistant bacteria using antimicrobial agents, antioxidants, host immune enhancement, probiotics, and bacteriophages, as well as various symptomatic therapies. To discover novel bioactive compounds, it is crucial to adopt approaches that incorporate fresh ideas, new targets, innovative techniques, and untapped resources. Halophytes are plants that grow in high-salt soils and are known to adapt to salt-induced stress through unique metabolic processes that produce secondary metabolites. This study aimed to investigate the effects of extracts of halophytes native to Korea on oxidative stress and to determine whether they exert inhibitory activity against biofilms, which are major pathogenic factors of infectious bacteria. The Acinetobacter baumannii strain ATCC 17978, a representative drug-resistant bacterium, was used to measure anti-biofilm activity. The results showed that Aster spathulifolius, Carex kobomugi, Rosa rugosa, and Asparagus cochinchiensis exerted strong antioxidant and anti-biofilm effects without affecting bacterial growth itself. The halophytes used in this study are promising candidates for the development of pharmaceutical agents with antioxidant and antimicrobial properties.