• Title/Summary/Keyword: biofilm biomass

Search Result 104, Processing Time 0.026 seconds

Laboratory Study on the Factors Affecting on Initial Anaerobic Biomass Development (혐기성 부착미생물의 초기성장에 미치는 영향인자에 관한 연구)

  • 허준무;박종안;손부순
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.185-194
    • /
    • 1998
  • Laboratory-scale investigation into initial anaerobic biofilm development was carried out by circulating mixed liquor from a steady-state anaerobic reactor through silicone tubing and then rerurning the mixed liquor to the reactor. The wall of the silicone tubing was the surface upon which anaerobic biofilm accumulation or development was monitored. Methanogenic bacteria accumulation was monitored by F$_{420}$ fluorescence (picomoles F$_{420}$/cm$^{2}$) of the extracted biofilm material. Biofilm accumulation was measured by the increase in COD of the extracted material ($\mu $g COD/cm$^{2}$). Experiments were conducted for 25 days, and biofilm analyses were performed at 5 days intervals. The results indicated that the initial rates of methangen and anaerobic biofilm accumulation increased with increasing organic loading rate and higher initial rates were observed for 15 days than 15 day liquid HRT or SRT. When the initial rates were plotted against the corresponding mixed liquor volatile suspended solids the difference between the results at the two HRT's became much less significant. Thus, the concentration of mixed liquor volatile suspended solids was found to be a very important parameter affecting initial anaerobic biofilm development. The ratio of methanogens to anaerobic biofilm was also investigated. The results showed that the ratio remained constant through the 25 days of each experiment and for high organic loading rates. Based on the results of this research, a reduction, a reduction of start-up period of anaerobic fixed film reactors might be achieved by maintaining a high organic loading and a large concentration of anaerobic microorganisms in the mixed liquor during the start-up period.

  • PDF

KINETICS OF AUTOTROPHIC DENITRIFICATION FOR THE BIOFILM FORMED ON SULFUR PARTICLES : Evaluation of Molecular Technique on Monitoring Biomass Growth

  • Kim, Sung-Youn;Jang, Am;Kim, I-Tae;Kim, Kwang-Soo;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.10 no.6
    • /
    • pp.283-293
    • /
    • 2005
  • Characteristics of sulfur-based autotrophic denitrification in a semi-continuous type reactor and the kinetic parameters were studied. Enriched autotrophic denitrifying culture was used for the reactor operation. Biomass growth on sulfur particles and in the liquid medium was monitored using the DAPI staining method. From the result of ion concentration changes and the biomass growth, maximum specific growth rate, ${\mu}_{max}$, and the half velocity constant, $K_M$, were estimated as $0.61\;d^{-1}$ and 3.66 mg/L, respectively. Growth yield coefficient, Y values for electron acceptor and donor were found as 0.49 gVSS/g N and 0.16 gVSS/g S. The biomass showed specific denitrification rate, ranging 0.86-1.13 gN/g VSS-d. A half-order equation was found to best simulate the denitrification process in the packed bed reactor operated in the semi-continuous mode.

Stimulatory Effects of Sugarcane Molasses on Fumigaclavine C Biosynthesis by Aspergillus fumigatus CY018 via Biofilm Enhancement

  • Tao, Jun;An, Fa-Liang;Pan, Zheng-Hua;Lu, Yan-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.748-756
    • /
    • 2018
  • Biofilms are of vital significance in bioconversion and biotechnological processes. In this work, sugarcane molasses was used to enhance biofilms for the improvement of the production of fumigaclavine C (FC), a conidiation-associated ergot alkaloid with strong anti-inflammatory activities. Biofilm formation was more greatly induced by the addition of molasses than the addition of other reported biofilm inducers. With the optimal molasses concentration (400 g/l), the biofilm biomass was 6-fold higher than that with sucrose, and FC and conidia production was increased by 5.8- and 3.1-fold, respectively. Moreover, the global secondary metabolism regulatory gene laeA, FC biosynthetic gene fgaOx3, and asexual central regulatory genes brlA and wetA were upregulated in molasses-based biofilms, suggesting the upregulation of both asexual development and FC biosynthesis. This study provides novel insight into the stimulatory effects of molasses on biofilm formation and supports the widespread application of molasses as an inexpensive raw material and effective inducer for biofilm production.

Denitrification of Wastewater in a Fluidized Bed Biofilm Reactor (유동층 생물막 반응기에서의 폐수 탈질화)

  • 신승훈;서일순;장인용
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.337-343
    • /
    • 2001
  • Activated carbon particles of 1.274 mm diameter and sand particles of 0.455 mm diameter were employed as the support of the biofilm formed in fluidized bed biofilm reactors(FBBRs) for the wastewater denitrification. Ethanol was used as the electron donor in the anoxic respiration. The steady-state biofilm thickness increased as the nitrate loading rate increased, and the activated carbon particles induced thicker biofilm than the sand particles. The FBBRs with sand support showed higher efficiency and rate of the nitrate removal than those with activated carbon support, and exhibited the biomass concentration of 37 kg/㎥ and the nitrate removal rate of 21 kg N/㎥d.

  • PDF

A Study on the Organic Waterwater Treatment Using of Agitating Mixer Biofilm Reactor (Agitating mixer를 이용한 생물막공법에서 유기성 폐수처리에 관한 연구)

  • Lee, Sang-Soo;Kim, Sung-Sun;Tak, Sung-Je;Jung, Kun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.107-115
    • /
    • 1999
  • The general objectives of this study are to develop a new biofilm reactor equipped with agitating mixer and to evaluated the treatment efficiency of the reactor. The experimental tests were conducted to estimate the oxygen transfer rate of agitating mixer system. Results are as follows. 1. The oxygen transfer coefficient, KLa, was $8.94hr{-1}$ and $7.50hr{-1}$ at 500rpm and 250rpm of agitating mixer speed, respectively. When the agitating mixer was used in the biofilm reactor, 22.5% and 18.8% of oxygen transfer rates were increased at 500rpm and 250rpm, respectively. 2. The removal rate of BOD and CODcr was decreased by 5.0% when the agitating mixer speed was varied from low (250rpm) to high level (500rpm). 3. The concentration of attached biomass had a difference of 5.0% to 7.3%, whereas that of suspended biomass had a difference of about 15.0%, depending upon variation of the agitating mixer speed.

  • PDF

Hydraulic Shock of Apartment Sewage in Inverse Fluidized Bed Biofilm Reactor (역유동층 생물막 반응기에서 수리학적 충격에 따른 아파트 오수의 처리)

  • 박영식;나영수
    • Journal of Environmental Science International
    • /
    • v.6 no.1
    • /
    • pp.17-24
    • /
    • 1997
  • The objective of this study was to examine the transient response to hydraulic shocks in an Inverse fluidized bed bioflm reactor(IFBBR) for the treatment of apartment sewage. The hydraulic shock experiments, when the system were reached at steady state with each HRT 12, 7, and 4hr, were conducted by chancing twice HRT per day during 3days. The SCOD, SS, DO, and pH of the effluent stream were increased with hydraulic shock, but easily recovered to the steady state of pre-hydraulic shock condition. In spite of hydraulic shock, there were not much variation of biomass concentration, biofilm thickness and biofilm dry density.

  • PDF

Simultaneous Nitrification and Denitrification in a Fluidized Biofilm Reactor with a Hollow Fiber Double Layer Biofilm Media (이중층 중공사 생물막 담체를 이용한 유동층 생물막 반응기에서의 동시 질산화와 탈질)

  • 이수철;이현용;김동진
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.514-520
    • /
    • 2000
  • Simultaneous nitrification and denitrification of ammonia and organic compounds-containing wastewater were performed in a fluidized bed biofilm reactor with polysulfone(PS) hollow fiber as a double layer biomass carrier. The PS hollow fiber fragment has both aerobic and anoxic environments for the nitrifiaction and denitrification at the shell and lumen-side respectively. The reactor system showed about 80% nitrification efficiency stably throughout the ammonia load conditions applied in the experiment. Denitrification efficiency depended on organic load and C/N ratio. High free ammonia concentration and low dissolved oxygen resulted in nitrite accumulation which leads to enhance organic carbon efficiency in denitrification when compared to nitrate denitrification. The simultaneous nitrification and denitrification reactor system has an economic advantages in reduced chemical cost of organic carbon for denitrification as well as compact reactor configuration.

  • PDF

Application of acyl-homoserine lactones for regulating biofilm characteristics on PAO1 and multi-strains in membrane bioreactor

  • Wonjung, Song;Chehyeun, Kim;Jiwon, Han;Jihoon, Lee;Zikang, Jiang;Jihyang, Kweon
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.35-45
    • /
    • 2023
  • Biofilms significantly affect the performance of wastewater treatment processes in which biodegradability of numerous microorganisms are actively involved, and various technologies have been applied to secure microbial biofilms. Understanding changes in biofilm characteristics by regulating expression of signaling molecules is important to control and regulate biofilms in membrane bioreactor, i.e., biofouling. This study investigated effects of addition of acyl-homoserine lactones (AHL) as a controllable factor for the microbial signaling system on biofilm formation of Pseudomonas aeruginosa PAO1 and multiple strains in membrane bioreactor. The addition of three AHL, i.e., C4-, C6-, and C8-HSL, at a concentration of 200 ㎍/L, enhanced the formation of the PAO1 biofilm and the degree of increases in the biofilm formation of PAO1 were 70.2%, 76.6%, and 72.9%, respectively. The improvement of biofilm formation of individual strains by C4-HSL was an average of 68%, and the microbial consortia increased by approximately 52.1% in the presence of 200 ㎍/L C4-HSL. CLSM images showed that more bacterial cells were present on the membrane surface after the AHL application. In the COMSTAT results, biomass and thickness were increased up to 2.2 times (PAO1) and 1.6 times (multi-strains) by C4-HSL. This study clearly showed that biofilm formation was increased by the application of AHL to individual strain groups, including PAO1 and microbial consortia, and significant increases were observed when 50 or 100 ㎍/L AHL was administered. This suggests that AHL application can improve the biofilm formation of microorganisms, which could yield an enhancement in efficiency of biofilm control, such as in various biofilm reactors including membrane bioreactor and bioflocculent systems in water/wastewater treatment processes.

Antibiofilm Activity of a Curcuma zedoaria Rosc Rhizome Extract against Methicillin-Resistant and Susceptible Staphylococcus aureus

  • Tabunhan, Sompong;Tungsukruthai, Parunkul
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.193-201
    • /
    • 2022
  • Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) are major causes of hospital- and community-acquired infections. The treatment of biofilm-related infections caused by these bacteria is a global healthcare challenge. Therefore, the development of alternative therapeutics is required. An essential oil extracted from Curcuma zedoaria (CZ) Rosc, also known as white turmeric, has been reported to possess various antimicrobial activities. In the present study, we evaluated the antibiofilm activities of an ethanolic extract of the CZ rhizome against MRSA and MSSA. The results showed that the CZ extract with the highest sub-minimum inhibitory concentration (sub-MIC), 1/2 MIC (0.312 mg/ml), significantly inhibited biofilm production by up to 80-90% in both tested strains. Subsequently, we evaluated the ability of the CZ extract to prevent cell-surface attachment to a 96-well plate and extracellular DNA (eDNA) release from the biofilm. The CZ extract demonstrated an inhibitory effect on bacterial attachment and eDNA release from the biofilm biomass. The CZ extract may inhibit biofilm formation by preventing eDNA release and cell-surface attachment. Therefore, this CZ extract is a potential candidate for the development of alternative treatments for biofilm-associated MRSA and MSSA infections.

Characteristics of continuous operation of the anaerobic biofilm reactor (혐기성 생물막 반응기의 초기 운전특성)

  • 이승란;김도한;나영수;이창한;박영식;윤태경;송승구
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.209-214
    • /
    • 2002
  • The lab-scale anaerobic continuous reactor which was filled with the sludge of anaerobic digestion from Suyoung wastewater treatment plant was operated by feeding of various concentrations and flow rates. This experiment indicated that more than 6,870 mgCOD/L of substrate concentration was required to promote good metabolism and growth of anaerobic biomass. And increasing loading rate slowly was also required in order to treat substrate of higher concentration and higher loading rate. The substrate concentration of about 10,000 mgCOD/L was adequate to generate biogas efficiently. The pH was sharply decreased at the onset of higher leading rate, but the pH was restabilized soon at 8. During the experiment, the amount of the attached biomass was kept constant.