Browse > Article
http://dx.doi.org/10.48022/mbl.2201.01007

Antibiofilm Activity of a Curcuma zedoaria Rosc Rhizome Extract against Methicillin-Resistant and Susceptible Staphylococcus aureus  

Tabunhan, Sompong (Chulabhorn International College of Medicine, Thammasat University)
Tungsukruthai, Parunkul (Chulabhorn International College of Medicine, Thammasat University)
Publication Information
Microbiology and Biotechnology Letters / v.50, no.2, 2022 , pp. 193-201 More about this Journal
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) are major causes of hospital- and community-acquired infections. The treatment of biofilm-related infections caused by these bacteria is a global healthcare challenge. Therefore, the development of alternative therapeutics is required. An essential oil extracted from Curcuma zedoaria (CZ) Rosc, also known as white turmeric, has been reported to possess various antimicrobial activities. In the present study, we evaluated the antibiofilm activities of an ethanolic extract of the CZ rhizome against MRSA and MSSA. The results showed that the CZ extract with the highest sub-minimum inhibitory concentration (sub-MIC), 1/2 MIC (0.312 mg/ml), significantly inhibited biofilm production by up to 80-90% in both tested strains. Subsequently, we evaluated the ability of the CZ extract to prevent cell-surface attachment to a 96-well plate and extracellular DNA (eDNA) release from the biofilm. The CZ extract demonstrated an inhibitory effect on bacterial attachment and eDNA release from the biofilm biomass. The CZ extract may inhibit biofilm formation by preventing eDNA release and cell-surface attachment. Therefore, this CZ extract is a potential candidate for the development of alternative treatments for biofilm-associated MRSA and MSSA infections.
Keywords
Curcuma zedoaria; antibiofilm; methicillin-resistant Staphylococcus aureus; methicillin-susceptible S. aureus; extracellular DNA; attachment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lai EY, Chyau CC, Mau JL, Chen CC, Lai YJ, Shih CF, et al. 2004. Antimicrobial activity and cytotoxicity of the essential oil of Curcuma zedoaria. Am. J. Chin. Med. 32: 281-290.   DOI
2 Chachad DP, Talpade MB, Jagdale SP. 2016. Antimicrobial activity of rhizomes of Curcuma zedoaria Rosc. Int. J. Sci. Res. (IJSR). 5: 938-940.   DOI
3 Bowler PG. 2018. Antibiotic resistance and biofilm tolerance: a combined threat in the treatment of chronic infections. J. Wound Care 27: 273-277.   DOI
4 Moghadam SO, Pourmand MR, Aminharati F. 2014. Biofilm formation and antimicrobial resistance in methicillin-resistant Staphylococcus aureus isolated from burn patients, Iran. J. Infect. Dev. Ctries 8: 1511-1517.   DOI
5 Hayat S, Sabri AN, McHugh TD. 2018. Chloroform extract of turmeric inhibits biofilm formation, EPS production and motility in antibiotic resistant bacteria. J. Gen. Appl. Microbiol. 63: 325-338.   DOI
6 Song J, Choi B, Jin EJ, Yoon Y, Choi KH. 2011. Curcumin suppresses Streptococcus mutans adherence to human tooth surfaces and extracellular matrix proteins. Eur. J. Clin. Microbiol. Infect. Dis. 31: 1347-1352.
7 Ng M, Epstein SB, Callahan MT, Piotrowski BO, Simon GL, Roberts AD, et al. 2014. Induction of MRSA biofilm by low-dose beta-lactam antibiotics: specificity, prevalence and dose-response effects. Dose Response 12: 152-161.   DOI
8 Panphut W, Budsabun T, Jengcharoen T, Sangsuriya P. 2018. Antimicrobial metabolite of Zingiberaceae essential oils using resazurin a rapid colorimetric detection. Eur. J. Anal. Chem. 13: 488-496.
9 Loo C-Y, Rohanizadeh R, Young PM, Traini D, Cavaliere R, Whitchurch CB, et al. 2016. Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. J. Agric. Food Chem. 64: 2513-2522.   DOI
10 Suwal N, Subba RK, Paudyal P, Khanal D, Panthi M, Suwal N, et al. 2021. Antimicrobial and antibiofilm potential of Curcuma longa Linn. rhizome extract against biofilm producing Staphylococcus aureus and Pseudomonas aeruginosa isolates. Cell. Mol. Biol. 67: 17-23.   DOI
11 Shukla A, Parmar P, Rao P, Goswami D, Saraf M. 2020. Twin peaks: presenting the antagonistic molecular interplay of curcumin with LasR and LuxR quorum sensing pathways. Curr. Microbiol. 77: 1800-1810.   DOI
12 Packiavathy IA, Sasikumar P, Pandian SK, Veera Ravi A. 2013. Prevention of quorum-sensing-mediated biofilm development and virulence factors production in Vibrio spp. by curcumin. Appl. Microbiol. Biotechnol. 97: 10177-10187.   DOI
13 Li B, Pan T, Lin H, Zhou Y. 2020. The enhancing antibiofilm activity of curcumin on Streptococcus mutans strains from severe early childhood caries. BMC Microbiol. 20: 286.   DOI
14 Sharma D, Misba L, Khan AU. 2019. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist. Infect. Control 8: 76.   DOI
15 Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. 2018. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 11: 1645-1658.   DOI
16 Wilson B, Abraham G, Manju VS, Mathew M, Vimala B, Sundaresan S, et al. 2005. Antimicrobial activity of Curcuma zedoaria and Curcuma malabarica tubers. J. Ethnopharmacol. 99: 147-151.   DOI
17 Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18: 318-327.   DOI
18 Dosoky NS, Setzer WN. 2018. Chemical composition and biological activities of essential oils of Curcuma species. Nutrients 10: 1196.   DOI
19 Pakkulnan R, Anutrakunchai C, Kanthawong S, Taweechaisupapong S, Chareonsudjai P, Chareonsudjai S. 2019. Extracellular DNA facilitates bacterial adhesion during Burkholderia pseudomallei biofilm formation. PLoS One 14: e0213288.   DOI
20 Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI. 2018. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4: e01067.   DOI
21 Hertiani T, Pratiwi S, Nuryastuti T, Murti Y, Hamzah H. 2020. The inhibition and degradation activity of demethoxycurcumin as antibiofilm on C. albicans ATCC 10231. Res. J. Pharm. Technol. 13: 377-382.   DOI
22 Figueiredo AMS, Ferreira FA, Beltrame CO, Cortes MF. 2017. The role of biofilms in persistent infections and factors involved in ica-independent biofilm development and gene regulation in Staphylococcus aureus. Crit. Rev. Microbiol. 43: 602-620.   DOI
23 Hassoun A, Linden PK, Friedman B. 2017. Incidence, prevalence, and management of MRSA bacteremia across patient populations-a review of recent developments in MRSA management and treatment. Crit. Care 21: 211.   DOI
24 Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. 2018. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 4: 18034.   DOI
25 Cortes MF, Beltrame CO, Ramundo MS, Ferreira FA, Figueiredo AM. 2015. The influence of different factors including fnbA and mecA expression on biofilm formed by MRSA clinical isolates with different genetic backgrounds. Int. J. Med. Microbiol. 305: 140-147.   DOI
26 Huang Y, Xue C, He W, Zhao X. 2019. Inhibition effect of Zedoary turmeric oil on Listeria monocytogenes and Staphylococcus aureus growth and exotoxin proteins production. J. Med. Microbiol. 68: 657-666.   DOI
27 Craft KM, Nguyen JM, Berg LJ, Townsend SD. 2019. Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype. Medchemcomm 10: 1231-1241.   DOI
28 Liu J, Yang L, Hou Y, Soteyome T, Zeng B, Su J, et al. 2018. Transcriptomics study on Staphylococcus aureus biofilm under low concentration of ampicillin. Front. Microbiol. 9: 2413.   DOI
29 Batista de Andrade Neto J, Pessoa de Farias Cabral V, Brito Nogueira LF, Rocha da Silva C, Gurgel do Amaral Valente Sa L, Ramos da Silva A, et al. 2021. Anti-MRSA activity of curcumin in planktonic cells and biofilms and determination of possible action mechanisms. Microb. Pathog. 155: 104892.   DOI
30 Moshe M, Lellouche J, Banin E. 2011. Curcumin: a natural antibiofilm agent, pp. 89-93. Sci Technol against Microb Pathog, Ed. World Scientific Publishing Co., Valladilid, Spain.
31 CLSI. 2021. Performance standards for antimicrobial susceptibility testing, 31st edition. CLSI supplement M100. Clin. Lab. Standards Institute 41: 64-74.
32 Sugimoto S, Sato F, Miyakawa R, Chiba A, Onodera S, Hori S, et al. 2018. Broad impact of extracellular DNA on biofilm formation by clinically isolated Methicillin-resistant and -sensitive strains of Staphylococcus aureus. Sci. Rep. 8: 2254.   DOI
33 Kavanaugh JS, Flack CE, Lister J, Ricker EB, Ibberson CB, Jenul C, et al. 2019. Identification of extracellular DNA-binding proteins in the biofilm matrix. mBio 10: e01137-19.
34 Trastoy R, Manso T, Fernandez-Garcia L, Blasco L, Ambroa A, Perez Del Molino ML, et al. 2018. Mechanisms of bacterial tolerance and persistence in the gastrointestinal and respiratory environments. Clin. Microbiol. Rev. 31: e00023-18.
35 Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. 2003. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin. Infect. Dis. 36: 53-59.   DOI
36 Nelson RE, Slayton RB, Stevens VW, Jones MM, Khader K, Rubin MA, et al. 2017. Attributable mortality of healthcare-associated infections due to multidrug-resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus. Infect. Control Hosp. Epidemiol. 38: 848-856.   DOI
37 Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. 2011. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2: 445-459.   DOI
38 del Pozo JL, Patel R. 2007. The challenge of treating biofilm-associated bacterial infections. Clin. Pharmacol. Ther. 82: 204-209.   DOI
39 Santiago C, Lim KH, Loh HS, Ting KN. 2015. Inhibitory effect of Duabanga grandiflora on MRSA biofilm formation via prevention of cell-surface attachment and PBP2a production. Molecules 20: 4473-4482.   DOI
40 Khameneh B, Iranshahy M, Soheili V, Fazly Bazzaz BS. 2019. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob. Resist. Infect. Control 8: 118.   DOI
41 Koshy P, Sri Nurestri Abd M, Wirakarnain S, Sim Kae S, Saravana K, Hong Sok L, et al. 2009. Antimicrobial activity of some medicinal plants from Malaysia. Am. J. Appl. Sci. 6: 1613-1617.   DOI
42 Armbruster CR, Parsek MR. 2018. New insight into the early stages of biofilm formation. Proc. Natl. Acad. Sci. USA 115: 4317-4319.   DOI
43 McCarthy H, Rudkin JK, Black NS, Gallagher L, O'Neill E, O'Gara JP. 2015. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front. Cell Infect. Microbiol. 5: 1.   DOI
44 Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. 2015. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev. Anti-Infect. Ther. 13: 1499-1516.   DOI
45 Bhattacharya S, Bir R, Majumdar T. 2015. Evaluation of multidrug resistant Staphylococcus aureus and their association with biofilm production in a tertiary care hospital, Tripura, Northeast India. J. Clin. Diagn. Res. 9: DC01-04.
46 Wang S, Kang OH, Kwon DY. 2021. Bisdemethoxycurcumin reduces methicillin-resistant Staphylococcus aureus expression of virulence-related exoproteins and inhibits the biofilm formation. Toxins (Basel). 13: 804.   DOI
47 Santiago C, Lim KH, Loh HS, Ting KN. 2015. Prevention of cell-surface attachment and reduction of penicillin-binding protein 2a (PBP2a) level in methicillin-resistant Staphylococcus aureus biofilms by Acalypha wilkesiana. BMC Complement. Altern. Med. 15: 79.   DOI
48 Lister JL, Horswill AR. 2014. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front. Cell. Infect. Microbiol. 4: 178.   DOI
49 Pazlarova J, Purkrtova S, Babulikova J, Demnerova K. 2014. Effects of ampicillin and vancomycin on Staphylococcus aureus biofilms. Czech J. Food Sci. 32: 137-144.   DOI
50 Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, et al. 2009. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One 4: e5822.   DOI