• 제목/요약/키워드: bioeqivalence test

검색결과 3건 처리시간 0.016초

Bioequivalence Study of Ranitidine Tablet

  • Shim, Chang-Koo;Hong, Jae-Sung;Lee, Chang-Ki;Han, Ik-Soo;Choi, Kwang-Sik
    • Archives of Pharmacal Research
    • /
    • 제13권2호
    • /
    • pp.180-186
    • /
    • 1990
  • A bioequivalence study of ranitidine tablets was conducted according to the Korean Guidine for the Bioequivalence Test using twelve healthy male subjects. The plasma concentration-timecurves of ranitidine from the test and reference tablets showed profound multiple peak phenomenon in each subject as reported earlier. However, the area under the plasma concentration-time curve (AUC) and the maximum ploasma concentration at the first peak ($C_{max1}$) of the two preparations was proven to be equal when analyzed satistically according to the criteria of the guidline;i. e., statistical power (1-$\beta$)was calculated to be over 0.8 under the condition of $\alpha$ = 5% and $\Delta$(minimum detectable difference) = 20%, and the confidence interval of the difference in AUC at 95% confidence level was in the range of $\pm$ 20%, which statisfied the criteria of bioequivalence. Equivalence of the peak concentration of ranitidine at the second peak ($C_{max2}$), and the time to reach the first ($T_{max1}$) and second verify the bioequivalence of $c_{max2}$ , $T_{max1}$ and $T_{max2}$ between the two tablets. However, we conclude that the test and reference tablets are bioequivalent taking the therapeutic characteristics of the ranitidine preparations into consideration.

  • PDF

생물학적동등성시험을 위한 통계처리 프로그램(BioEquiv)의 개발 (Development of BioEquiv, a Computer Program for the Analysis of Bioequivalence)

  • 윤상후;황난아;임영채;이용복;박정수
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권1호
    • /
    • pp.1-7
    • /
    • 2010
  • K-$BEtest^{(R)}$ is a well known program for bioequivalence test using a $2{\times}2$ design. Lee et al.(1998) and Park et al.(1999) suggested a $3{\times}3$ and $3{\times}2$ design, and also discussed their benefits. We developed a computer program, called BioEquiv, which can analyze some complex experimental designs such as, $3{\times}3$ design and $3{\times}2$ design including a standard $2{\times}2$ design. This program is a user-friendly one and overcomes the disadvantages of K-$BEtest^{(R)}$. The detailed statistical formula and structure of BioEquiv are presented with some examples. The comparison between K-$BEtest^{(R)}$ and BioEquiv are given with actual data analysis. BioEquiv is able to present a table of ANOVA test over some complex experimental designs. Moreover K-$BEtest^{(R)}$ and BioEquiv draw the same result when data consists of $2{\times}2$ design.

Bioequivalence Assesment of Tiropramide in Korean Male Volunteers

  • Park, Young-Jin;Chung, Youn-Bok;Kwon, Oh-Seung
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2002년도 창립10주년기념 및 국립독성연구원 의약품동등성평가부서 신설기념 국재학술대회:생물학적 동등성과 의약품 개발 전략을 위한 국제심포지움
    • /
    • pp.205-205
    • /
    • 2002
  • Two formulations of tiropramide {(${\pm}$)${\alpha}$-(benzoylamino)-4-[2-(diethylamino)-ethoxy]-N,N-dipropyl-benzenepropanamide hydrochloride}, an antispasmodic agent, were orally administered to 16 healthy Korean male volunteers by Latin crossover design with the purpose of evaluating bioeqivalence and phamacokinetics of tiropramide. Tiropramide in human plasma was determined by a gas chromatography/nitrogen phosphorus detector. Detection limit of tiropramide was 5 ng/ml. C$\_$max/ values in test and reference formulations were 93.9 ${\pm}$ 54.3 and 96.4 ${\pm}$ 51.6 ng/ml, respectively. AUC$\_$0\longrightarrowlast/ and AUC$\_$0\longrightarrowinf/ were, respectively, 330.7 ${\pm}$ 193.9 and 349.5 ${\pm}$ 205.3 ng.hr/ml for test formulation, 348.9 ${\pm}$ 207.7 and 380.8 ${\pm}$ 239.0 ng.hr/ml for reference formulation. Terminal half-life was 2.3-2.6 hr. Bioavailability differences for C/aub max/ and AUC$\_$0\longrightarrowlast/ were 2.48% and 5.22%, respectively. Minimum detection differences were less than 20% in both C$\_$max/ AUC. Based on this results, two formulations of tiropramide were considered to be bioequivalent

  • PDF