• Title/Summary/Keyword: bioenergy technologies

Search Result 26, Processing Time 0.021 seconds

Strain Improvement Based on Ion Beam-Induced Mutagenesis (이온빔을 이용한 미생물의 균주 개량)

  • Jeong, Hae-Young;Kim, Kye-Ryung
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.235-243
    • /
    • 2010
  • For decades, traditional mutation breeding technologies using spontaneous mutation, chemicals, or conventional radiation sources have contributed greatly to the improvement of crops and microorganisms of agricultural and industrial importance. However, new mutagens that can generate more diverse mutation spectra with minimal damage to the original organism are always in need. In this regard, ion beam irradiation, including proton-, helium-, and heavier-charged particle irradiation, is considered to be superior to traditional radiation mutagenesis. In particular, it has been suggested that ion beams predominantly produce strand breaks that often lead to mutations, which is not a situation frequently observed in mutagenesis induced by gamma-ray exposure. In this review, we briefly describe the general principles and history of particle accelerators, and then introduce their successful application in ion beam technology for the improvement of crops and microbes. In particular, a 100-MeV proton beam accelerator currently under construction by the Proton Engineering Frontier Project (PEFP) is discussed. The PEFP accelerator will hopefully prompt the utilization of ion beam technology for strain improvement, as well as for use in nuclear physics, medical science, biology, space technology, radiation technology and basic sciences.

A study on Strategic Planning of Marine Biotechnology for Next Generation (차세대 해양생명공학사업 추진 전략수립 연구)

  • Kang, Gil-Mo;Jang, Duckhee;Choi, Yong-Jin
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.84-101
    • /
    • 2014
  • The aim of this project is to develop an adaptive and collective National Marine Biotechnology Plan for the next decade(2014~2023) which is able to reflect current and future changing environment. This effective strategy targets to foster marine-derived active bio-materials, marine bioenergy production technology and many promising technologies in order to promote marine biotechnology industry as a next-generation growth engine. Marine biotechnology industry based on R&D activities since 1980 has been growing as an emerging industry. This new field enables to secure exclusive patent rights and to find new potential bio-active materials from the ocean that requires long-term aggressive R&D investments. The current policy direction is to raise appropriate level of R&D investment because the current Korea's national marine biotechnology R&D fund ratio is less than 2% of the total national biotechnology R&D budget. The result shows three major strategies. First, it recommended a research implementation system and supporting policy that includes establishment of open innovation framework for the 'Industry-Academia-Research Institute Collaborations', strategic research planning and enhanced policy making process. Second, it derived state-of-the-art or new technology in many areas. Third, it formulated more detailed execution plans for successful R&D support and set up performance indicator system in related R&D program.

Biomass Energy in the USA: A Literature Review (III) - Bioethanol production from Biomass and Feedstock Supply - (미국 에너지 시장에 공급되는 바이오에너지에 관한 연구 (III) - 바이오매스를 이용한 에탄올 생산과 원료공급에 대하여 -)

  • Kim, Yeong-Suk;Gorman, Thomas
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • This study was reviewed on the bioethanol production from biomass resources and feedstock supply in America. U.S. Department of Energy (USDE) and the u.s. Department of Agriculture USDA) are both strongly committed to expand the role of biomass as an energy source. They support biomass fuels and products as a way to reduce the need for oil and gas imports, to strengthen the nation's energy security and environmental quality. And it was envisioned a 20 percent replacement of the current U.S.transportation fuel consumption in 2030. Also it was reviewed policies to encourage the expanding of Bio-based fuel use to replace gasoline, such as Clean Air Act, Federal Clean Fuel Program and American Jobs Creation Act. In feedstock supply it was assumed forest biomass will be supplied in 368 million dry tons yearly and the agriculture derived biomass adopted by new technologies and land use change will be supplied in 998 million dry tons, including highly 818 million dry tons of lignocellulosic biomass such as perenial crops (hybrid trees, grasses) corn stover, other crop residues. This amount is 5 times to the amount from based current agricultural technology and crop land.

Future Directions and Perspectives on Soil Environmental Researches (토양환경분야 연구동향 및 전망)

  • Yang, Jae-E.;Ok, Yong-Sik;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1286-1294
    • /
    • 2011
  • This paper reviews the future directions and perspectives on the soil environmental researches in the 21 century. Previously, the principal emphasis of soil environmental researches had put on the enhancement of food and fiber productions. Beside the basic function of soil, however, the societal needs on soil resources in the 21st century have demands for several environmental and social challenges, occurring regionally or globally. Typical global issues with which soil science should deal include food security with increasing agronomic production to meet the exploding world population growth, adaptation and mitigation of climate change, increase of the carbon sequestration, supply of the biomass and bioenergy, securing the water resource and quality, protection of environmental pollution, enhancing the biodiversity and ecosystem health, and developing the sustainable farming/cropping system that improve the use efficiency of water and agricultural resources. These challenges can be solved through the sustainable crop production intensification (SCPI) or plant welfare concept in which soil plays a key role in solving the abovementioned global issues. Through implementation of either concept, soil science can fulfill the goal of the modern agriculture which is the sustainable production of crops while maintaining or enhancing the ecosystem function, quality and health. Therefore, directions of the future soil environmental researches should lie on valuing soil as an ecosystem services, translating research across both temporal and spatial scales, sharing and using data already available for other purposes, incorporating existing and new technologies from other disciplines, collaborating across discipline, and translating soil research into information for stakeholders and end users. Through the outcomes of these approaches, soil can enhance the productivity from the same confined land, increase profitability, conserve natural resource, reduce the negative impact on environment, enhance human nutrition and health, and enhance natural capital and the flow of ecosystem services. Soil is the central dogma, final frontier and new engine for the era of sustainability development in the $21^{st}$ century and thus soil environmental researches should be carried according to this main theme.

Cellulosic Ethanol as Renewable Alternative Fuel (신재생 대안 에너지로서의 셀룰로스 에탄올)

  • Cho, Woo-Suk;Chung, Yu-Hee;Kim, Bo-Kyung;Suh, Su-Jeoung;Koh, Wan-Soo;Choe, Sung-Hwa
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.111-118
    • /
    • 2007
  • Global warming crisis due primarily to continued green house gas emission requires impending change to renewable alternative energy than continuously depending on exhausting fossil fuels. Bioenergy including biodiesel and bioethanol are considered good alternatives because of their renewable and sustainable nature. Bioethanol is currently being produced by using sucrose from sugar beet, grain starches or lignocellulosic biomass as sources of ethanol fermentation. However, grain production requires significant amount of fossil fuel inputs during agricultural practices, which means less competitive in reducing the level of green house gas emission. By contrast, cellulosic bioethanol can use naturally-growing, not-for-food biomass as a source of ethanol fermentation. In this respect, cellulosic ethanol than grain starch ethanol is considered a more appropriate as a alternative renewable energy. However, commercialization of cellulosic ethanol depends heavily on technology development. Processes such as securing enough biomass optimized for economic processing, pretreatment technology for better access of polymer-hydrolyzing enzymes, saccharification of recalcitrant lignocellulosic materials, and simultaneous fermentation of different sugars including 6-carbon glucose as well as 5-carbon xylose or arabinose waits for greater improvement in technologies. Although it seems to be a long way to go until commercialization, it should broadly benefit farmers with novel source of income, environment with greener and reduced level of global warming, and national economy with increased energy security. Mission-oriented strategies for cellulosic ethanol development participated by government funding agency and different disciplines of sciences and technologies should certainly open up a new era of renewable energy.

Current Status and Prospect of Seaweed-based Biofuels as Renewable Energy Resource (재생가능 에너지원으로서의 해조류 유래 바이오 연료의 현황과 전망)

  • Liu, Jay
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.163-173
    • /
    • 2022
  • Research and development of biofuels as one of the means to mitigate global warming and to avoid fossil fuel depletion has occurred for more than 30 years. However, there has only been limited distribution of a few first- and second-generation biofuels, and widespread supply and consumption of biofuels is still far from a reality. Although a relatively recently studied third-generation biofuel derived from seaweed biomass has been shown to have many advantages, it is yet to be deployed in commercial-scale seaweed biorefineries. This review paper examines the advantages and disadvantages of seaweed biorefineries for the entire value chain covering from seaweed and its cultivation to biofuel production based on an extensive literature search and the author's experience of conducting feasibility studies pertaining to seaweed biorefineries for over 10 years. For this purpose, the literature survey will cover the current status of seaweed production and its research and development worldwide, conversion technologies for biofuel production from seaweed based on bench-scale experiments, and large-scale techno-economic feasibility studies for seaweed conversion to biofuels and bioenergy. In addition, the main problems expected with the commercialization of seaweed-based biofuels will be identified. Finally, the current status of seaweed biorefinery technology and the author's views on its promising future will be summarized.