• Title/Summary/Keyword: biodiesel feedstock

Search Result 50, Processing Time 0.021 seconds

Environmental Stress Strategies for Stimulating Lipid Production from Microalgae for Biodiesel (바이오디젤용 지질 생산을 위한 미세조류 배양에서 환경 스트레스 조건의 활용 전략)

  • Kim, Garam;Mujtaba, Ghulam;Rizwan, Muhammad;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.553-558
    • /
    • 2014
  • Microalgae are a promising alternative feedstock for biodiesel production because their growth rates and oil contents are higher than those of conventional energy crops. Microalgal lipid is mainly triacylglyceride that can be converted to biodiesel as fatty acid methyl esters through trans-esterification. In this paper, the influence of several important lipid inducing factors such as nutrient limitation and changes in salinity and metallic components in microalgae and their potential strategies to be used for biodiesel production are reviewed. Depending upon strains/species that we use, microalgae react to stresses by producing different amount of triacylglyceride and/or by altering their fatty acids composition. Although the most widely applied method is the nitrogen starvation, other potential factors, including nutrient surplus conditions and changes in salinity, pH, temperature and metal concentrations, should be considered to increase biodiesel productivity.

Reaction Condition for Biodiesel Production from Animal Fats (동물성 유지를 이용한 바이오디젤 생산의 반응조건)

  • Yang, Hee-Seung;Jeong, Gwi-Taek;Park, Suk-Hwan;Park, Jae-Hee;Park, Don-Hee
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.228-233
    • /
    • 2007
  • The high cost and lack of vegetable oil are limiting the expansion of biodiesel production. The purpose of research was to investigate the potential of animal fats as biodiesel feedstock. In this paper, transesterification using alkali catalyst and methanol was performed to reaction, we carried out experiments that it was changed variables as reaction temperature, methanol molar ratio, catalyst types, amount of catalyst and reaction time. The optimum reaction condition for biodiesel production was reaction temperature 65$^{\circ}C$, potassium hydroxide 1.0% (w/w), oil to methanol molar ratio 1:15 and reaction time 20 min. In this reaction condition, the contents of fatty acid methyl ester was reached to about 98.7%. Also, properties of biodiesel were measured to correspond to domestic quality standard of acid values, density and viscosity.

Fungal Production of Single Cell Oil Using Untreated Copra Cake and Evaluation of Its Fuel Properties for Biodiesel

  • Khot, Mahesh;Gupta, Rohini;Barve, Kadambari;Zinjarde, Smita;Govindwar, Sanjay;RaviKumar, Ameeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.459-463
    • /
    • 2015
  • This study evaluated the microbial conversion of coconut oil waste, a major agro-residue in tropical countries, into single cell oil (SCO) feedstock for biodiesel production. Copra cake was used as a low-cost renewable substrate without any prior chemical or enzymatic pretreatment for submerged growth of an oleaginous tropical mangrove fungus, Aspergillus terreus IBB M1. The SCO extracted from fermented biomass was converted into fatty acid methyl esters (FAMEs) by transesterification and evaluated on the basis of fatty acid profiles and key fuel properties for biodiesel. The fungus produced a biomass (8.2 g/l) yielding 257 mg/g copra cake SCO with ~98% FAMEs. The FAMEs were mainly composed of saturated methyl esters (61.2%) of medium-chain fatty acids (C12-C18) with methyl oleate (C18:1; 16.57%) and methyl linoleate (C18:2; 19.97%) making up the unsaturated content. A higher content of both saturated FAMEs and methyl oleate along with the absence of polyunsaturated FAMEs with ≥4 double bonds is expected to impart good fuel quality. This was evident from the predicted and experimentally determined key fuel properties of FAMEs (density, kinematic viscosity, iodine value, acid number, cetane number), which were in accordance with the international (ASTM D6751, EN 14214) and national (IS 15607) biodiesel standards, suggesting their suitability as a biodiesel fuel. The low cost, renewable nature, and easy availability of copra cake, its conversion into SCO without any thermochemical pretreatment, and pelleted fungal growth facilitating easier downstream processing by simple filtration make this process cost effective and environmentally favorable.

Optimization of biodiesel production via methyl acetate reaction from cerbera odollam

  • Dhillon, Sandip Singh;Tan, Kok Tat
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.325-337
    • /
    • 2016
  • Cerbera Odollam (sea mango) is a proven promising feedstock for the production of biodiesel due to its high oil content. Fatty acid methyl esters (FAME) were produced as the final reaction product in the transesterification reflux condensation reaction of sea mango oil and methyl acetate (MA). Potassium methoxide was used as catalyst to study its reacting potential as a homogeneous base catalyst. The initial part of this project studied the optimum conditions to extract crude sea mango oil. It was found that the content of sea mango sea mango oil was 55%. This optimum amount was obtained by using 18 g of grinded sea mango seeds in 250 ml hexane. The extraction was carried out for 24 hours using solvent extraction method. Response surface methodology (RSM) was employed to determine the optimum conditions of the reaction. The three manipulated variables in this reaction were the reaction time, oil to solvent molar ratio, and catalyst wt%. The optimum condition for this reaction determined was 5 hours reaction time, 0.28 wt% of catalyst and 1:35 mol/mol of oil: solvent molar ratio. A series of test were conducted on the final FAME product of this study, namely the FTIR test, GC-FID, calorimeter bomb and viscometer test.

Recycling of Lipid-extracted Algae Cell Residue for Microorganisms Cultivation and Bioenergy Production (미세조류 탈지세포잔류물의 미생물 배양 및 바이오에너지 생산으로의 재활용)

  • Dang, Nhat Minh;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.487-496
    • /
    • 2021
  • Microalgae is one of the promising biodiesel feedstock with high growth rates compared to those of terrestrial oil crops. Despite its numerous advantages, biodiesel production from microalgae needs to reduce energy demand and material costs further to go to commercialization. During solvent extraction of microalgal lipids, lipid-extracted algae (LEA) cell residue is generated as an organic solid waste, about 80-85% of original algal biomass, and requires an appropriate recycling or economic disposal. The resulting LEA still contains significant amount of carbohydrates, proteins, N, P, and other micronutrients. This review will focus on recent advancement in the utilization of LEA as: (i) utilization as nutrients or carbon sources for microalgae and other organisms, (ii) anaerobic digestion to produce biogas or co-fermentation to produce CH4 and H2, and (iii) conversion to other forms of biofuel through thermochemical degradation processes. Possible mutual benefits in the integration of microalgae cultivation-biodiesel production-resulting LEA with anaerobic digestion and thermochemical conversion are also discussed.

Review of property and utilization of oil crop for biodiesel (바이오디젤 원료작물의 기름 및 지방산 특성에 따른 활용방안 고찰)

  • Jang, Young-Seok;Kim, Kwang-Soo;Lee, Yong-Hwa;Cho, Hyeon-Jun;Suh, Sae-Jung
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.25-46
    • /
    • 2010
  • The demand for fuel and energy resources continues to grow due to increased consumption and emerging economies in all parts of the world. With this increase in demand, crude oil prices in the international market has jumped dramatically. Global warming, which is a consequence of increasing greenhouse gas (GHG) emissions, has become scientific, social, and political concerns. To cope with global warming and energy crisis, cost-competitive biofuels are urgently needed. In addition, development of an infrastructure, which supplies energy stably and diversifies energy resources, as well as new cost-saving technologies should be developed to reduce the costs of producing biofuels. Due to high oleic acid content, rapeseed (Brassica napus L.) is currently the potential feedstock for biodiesel production in temperate zone region and the production and use of rapeseed oil is already commercialized in Europe. In Korea double-cropping (rice and rapeseed) became more prevalent because it reduces competitions from land constraints. Production of rapeseed as a biodiesel feedstock may reduce the influence of rising oil prices and nation's dependence on imported petroleum and increase job opportunities and farm incomes.

Production of Biodiesel Using Immobilized Lipase from Proteus vulgaris (Proteus vulgaris에서 유래한 리파아제의 고정화 및 바이오디젤 생산)

  • Yoon, Shin-Ah;Han, Jin-Yee;Kim, Hyung-Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.238-244
    • /
    • 2011
  • Biodiesel, mono-alkyl esters of long chain fatty acids, is one of the alternative fuels derived from renewable lipid feedstock, such as vegetable oils or animal fats. For decade, various lipases have been used for the production of biodiesel. However, the production of biodiesel by enzymatic catalyst has profound restriction in industry application due to high cost. To overcome these problems, many research groups have studied extensively on the selection of cheap oil sources, the screening of suitable lipases, and development of lipase immobilization methods. In this study, we produced biodiesel from plant oil using Proteus vulgaris lipase K80 expressed in Escherichia coli cells. The recombinant lipase K80 was not only expressed in high level but also had high specific lipase activity and high stability in various organic solvents. Lipase K80 could produce biodiesel from olive oil by 3-stepwise methanol feeding method. The immobilized lipase K80 also produced biodiesel using the same 3-stepwise method. The immobilized lipase could produce biodiesel efficiently from various plant oils and waste oils.

Effects of Nitrogen Supplementation Status on CO2 Biofixation and Biofuel Production of the Promising Microalga Chlorella sp. ABC-001

  • Cho, Jun Muk;Oh, You-Kwan;Park, Won-Kun;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1235-1243
    • /
    • 2020
  • The use of microalgal biomass as feedstock for biofuels has been discussed for decades as it provides a sustainable approach to producing fuels for the future. Nonetheless, its feasibility has not been established yet and various aspects of biomass applications such as CO2 biofixation should also be explored. Therefore, in this study, the CO2 biofixation and lipid/carbohydrate production potential of Chlorella sp. ABC-001 were examined under various nitrogen concentrations. The highest biomass productivity and CO2 biofixation rate of 0.422 g/l/d and 0.683 g/l/d, respectively, were achieved under a nitrogen-rich condition (15 mM nitrate). Carbohydrate content was generally proportional to initial nitrate concentration and showed the highest value of 41.5% with 15 mM. However, lipid content showed an inverse relationship with nitrogen supplementation and showed the highest value of 47.4% with 2.5 mM. In consideration as feedstock for biofuels (bioethanol, biodiesel, and biogas), the sum of carbohydrate and lipid contents were examined and the highest value of 79.6% was achieved under low nitrogen condition (2.5 mM). For lipid-based biofuel production, low nitrogen supplementation should be pursued. However, considering the lower feasibility of biodiesel, pursuing CO2 biofixation and the production of carbohydrate-based fuels under nitrogen-rich condition might be more rational. Thus, nitrogen status as a cultivation strategy must be optimized according to the objective, and this was confirmed with the promising alga Chlorella sp. ABC-001.

Optimization and characterization of biodiesel produced from vegetable oil

  • Mustapha, Amina T.;Abdulkareem, Saka A.;Jimoh, Abdulfatai;Agbajelola, David O.;Okafor, Joseph O.
    • Advances in Energy Research
    • /
    • v.1 no.2
    • /
    • pp.147-163
    • /
    • 2013
  • The world faces several issues of energy crisis and environmental deterioration due to over-dependence on single source of which is fossil fuel. Though, fuel is needed as ingredients for industrial development and growth of any country, however the fossil fuel which is a major source of energy for this purpose has always been terrifying thus the need for alternative and renewable energy sources. The search for alternative energy sources resulted into the acceptance of a biofuel as a reliable alternative energy source. This work presents the study of optimization of process of transesterification of vegetable oil to biodiesel using NaOH as catalyst. A $2^4$ factorial design method was employed to investigate the influence of ratio of oil to methanol, temperature, NaOH concentration, and transesterification time on the yield of biodiesel from vegetable oil. Low and high levels of the key factors considered were 4:1 and 6:1 mole ratio, 30 and $60^{\circ}C$ temperatures, 0.5 and 1.0 wt% catalyst concentration, and 30 and 60 min reaction time. Results obtained revealed that oil to methanol molar ratio of 6:1, tranesetrification temperature of $60^{\circ}C$, catalyst concentration of 1.0wt % and reaction time of 30 min are the best operating conditions for the optimum yield of biofuel from vegetable oil, with optimum yield of 95.8%. Results obtained on the characterizzation of the produced biodiesel indicate that the specific gravity, cloud point, flash point, sulphur content, viscosity, diesel index, centane number, acid value, free glycerine, total glycerine and total recovery are 0.8899, 4, 13, 0.0087%, 4.83, 25, 54.6. 0.228mgKOH/g, 0.018, 0.23% and 96% respectively. Results also indicate that the qualities of the biodiesel tested for are in conformity with the set standard. A model equation was developed based on the results obtained using a statistical tool. Analysis of variance (ANOVA) of data shows that mole ratio of ground nut oil to methanol and transesterification time have the most pronounced effect on the biodiesel yield with contributions of 55.06% and 9.22% respectively. It can be inferred from the results various conducted that vegetable oil locally produced from groundnut oil can be utilized as a feedstock for biodiesel production.

General Equilibrium Effects of Trade Liberalization on the Diffusion of Environment-friendly Fuels (관세철폐가 친환경연료 산업에 미치는 일반균형적 파급 효과)

  • Bae, Jeong-Hwan
    • Environmental and Resource Economics Review
    • /
    • v.18 no.1
    • /
    • pp.23-51
    • /
    • 2009
  • This research alms at quantifying economic impacts of free trading policy on environment-friendly fuel industry applying a static general equilibrium (CGE) model for Korea. Theoretically, 'polluters haven' hypothesis had been debated as major issue on the environmental effects of trade liberalization during 1970s and 1980s but recent literature emphasizes that production, scale, structural, and regulatory effects may derive rapid diffusion of environment friendly technologies. In this study, trade liberalization policy affects output of agricultural sectors negatively while that of biodiesel as environment-friendly technology positively. The rise m the output of biodiesel is derived from the reduction in import prices of agricultural products due to the abolishment of tariff. The policy implication from the analysis is that feedstock for producing biodiesel should be exploited in the foreign countries where productivity of agriculture is quite predominant compared to Korean agriculture.

  • PDF