• Title/Summary/Keyword: biodegradable COD

Search Result 113, Processing Time 0.023 seconds

Conversion of CODMn into TOC and Refractory Organic Matter Concentrations for Treated Sewage using Regression Equations (회귀식을 사용한 하수처리장 방류수 CODMn 농도의 총 유기탄소 및 난분해성 물질 농도 전환)

  • Lee, Tae-Hwan;Lee, Bomi;Hur, Jin;Jung, Myung-Sook;Kang, Tae-Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.969-975
    • /
    • 2010
  • Estimating the organic matter loadings from individual treated sewage has become important for establishment of effective management strategies to control refractory organic matter (R-OM) in watersheds. For this study, regression equations were constructed using treated sewage data to convert the chemical oxygen demand (COD) concentrations, which are mostly available from open database, into total organic carbon (TOC) and R-OM concentrations. Effluent samples were collected from five major sewage treatment plants (STPs) located upstream of the lake Paldang. Variations in the OM concentrations were not associated with either the location of the STP or the sampling season. The effluent investigated were characterized by higher ratio of R-OM with respect to biodegradable organic matter (B-OM) and higher presence of dissolved organic matters (DOM) versus particulate organic matter (POM). Compared to $COD_{Mn}$, $COD_{Cr}$ exhibited higher oxidation efficiencies and greater variations in the concentrations. The concentrations of $COD_{Mn}$ were positively correlated with dissolved organic carbon (DOC), total organic carbon (TOC), and R-OM concentrations. There was nearly no seasonal and annual variation in the regression equations between $COD_{Mn}$ and TOC or R-OM concentrations. The constructed regression equations for TOC and R-OM were $0.650({\pm}0.071){\times}COD_{Mn}+1.426({\pm}0.575)$ and $0.340({\pm}0.083){\times}COD_{Mn}+2.054({\pm}0.670)$, respectively. The established equations are expected to contribute to estimating OM loadings from the STPs into the lake Paldang and also to compensating for the deficiency of the data for effluent OM concentrations in STP.

Evaluation of Nanjido Landfill Site Stabilization by Leachate Component (침출수 성분에 따른 난지도 매립지의 안정화 평가)

  • Lee Je-Seung;Suh Mi-Yeon;Kim Hyun-Kook;Lee Sung-Joo;Kim Kwang-Jin;Shin Jung-Sik
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.3 s.53
    • /
    • pp.13-21
    • /
    • 2004
  • This study was focused on the evaluation of Nanjido landfill site by leachate analysis. Several parameters, for example pH, BOD, $COD_{Mn},\;COD_{Cr}$, SS, TP, $NH_3-N$, Color, were selected as major leachate quality parameters. $BOD/COD_{Cr}$. was used to estimate the biodegradable portion in organic matter. Samples were collected at the leachate storage wells and leachate treatment facility inflow in each quarter of 2003. The results were as follows : 1. Inflow quality of treatment plant in 2003 was analysed as $pH\;7.3\~8.0,\;BOD\;12.4\~30.0mg/L,\;COD_{Mn}\;101.2\~130.3mg/L,\;COD_{Cr}\;122.5\~238.0mg/L,\;SS\;16.1\~115.3mg/L$, $T-P\;0.27\~0.80mg/L,\;NH_3-N\;208.0\~~354.0mg/L$, Color $110.3\~129.0$ unit. 2. $BOD/COD_{Cr}$ of inflow ranged between $0.07\~0.16$ indicating that the landfill had the properties of old-fill and organic portion in leachate was mostly persistent organic matter. 3. Though concentrations of BOD, COD, $NH_3-N$, Color in leachate storage wells were mostly higher in first landfill than in second landfill, $BOD/COD_{Cr}$ ranging from 0.03 to 0.20, showed reversely. 4. Correlation coefficient$(R^2)$ between color and other parameters related to organic matter showed mostly above 0.7 and especially highest value with $COD_{Mn}$ of 0.7985.

Study on the Removal of Fluorescent Whitening Agent by Pretreatment Ozone Oxidation for MBR Process Application (MBR 공정 적용을 위한 전처리 오존산화에 의한 형광증백제 제거 연구)

  • Choi, Jang-Seung;Ryu, Seung-Han;Shin, Dong-Hun;Lee, Jae-Hun;Lee, Soo-Chol;Kim, Sung-Gi;Ryu, Jae-Young;Shin, Won-Sik;Lee, Seul-Ki;Park, Min-Soo
    • Textile Coloration and Finishing
    • /
    • v.29 no.1
    • /
    • pp.11-17
    • /
    • 2017
  • In this study, ozone oxidation experiment was carried out for the removal of fluorescent whitening agent which is widely used in textile dyeing and paper industry. The stilbene fluorescent whitening agent has been industrialized since the earliest, and the amount of current production is the highest. Due to the characteristics of the fluorescent whitening agent that can not be removed by conventional wastewater treatment methods, the fluorescent whitening agent in wastewater treatment has difficulty in using as recycled water in the process. Pre-treatment ozone oxidation experiment was conducted prior to the introduction of Membrane Bio Reactor(MBR) treatment process by converting biodegradable materials into biodegradable materials. The removal efficiencies of fluorescent whitening agents, a diaminostilbenedisulfonic acid derivative by ozone oxidation were evaluated by $UV_{254}$ Scan, $COD_{Mn}$, T-N and color using a synthetic wastewater sample ($COD_{Mn}=433.0mg/{\ell}$) and paper and paper mill wastewater ($COD_{Mn}=157.2mg/{\ell}$).

Treatment of Pharmaceutical Wastewaters by Hydrogen Peroxide and Zerovalent Iron

  • Jeon, Byeong-Cheol;Nam, Se-Yong;Kim, Young-Kwon
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2014
  • Fenton reaction with zerovalent iron (ZVI) and $Fe^{2+}$ ions was studied to treat pharmaceutical wastewaters (PhWW) including antibiotics and non-biodegradable organics. Incremental biodegradability was assessed by monitoring biochemical oxygen demand (BOD) changes during Fenton reaction. Original undiluted wastewater samples were used as collected from the pharmaceutical factory. Experiments were carried out to obtain optimal conditions for Fenton reaction under different $H_2O_2$ and ion salts (ZVI and $Fe^{2+}$) concentrations. The optimal ratio and dosage of $H_2O_2$/ZVI were 5 and 25/5 g/L (mass basis), respectively. Also, the optimal ratio and dosage of $H_2O_2/Fe^{2+}$ ions were 5 and 35/7 g/L (mass basis), respectively. Under optimized conditions, the chemical oxygen demand (COD) removal efficiency by ZVI was 23% better than the treatment with $Fe^{2+}$ ion. The reaction time was 45 min for ZVI and shorter than 60 min for $Fe^{2+}$ ion. The COD and total organic carbon (TOC) were decreased, but BOD was increased under the optimal conditions of $H_2O_2$/ZVI = 25/5 g/L, because organic compounds were converted into biodegradable intermediates in the early steps of the reaction. The BOD/TOC ratio was increased, but reverse-wise, the COD/TOC was decreased because of generated intermediates. The biodegradability was increased about 9.8 times (BOD/TOC basis), after treatment with ZVI. The combination of chemical and biological processes seems an interesting combination for treating PhWW.

Modeling of Existing BNR Process using ASM3 and Modified Bio-P Module (ASM3+Bio-P module을 이용한 기존 BNR공정 모사)

  • Rho, Hae-Yeon;Gil, Kyung-Ik
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.309-313
    • /
    • 2007
  • In Activated Sludge Model, COD fraction of primary settled municipal wastewater was a very important parameter. In this study, the COD fraction was determined using the oxygen utilization rate experiments. Readily biodegradable COD ($S_S$) fraction was observed about 29.7% of influent TCOD. $S_I$, $X_I$, and $X_S$ were analyzed to be 7.6%, 7.3%, and 55.4% of TCOD, respectively. The model used in this study was developed based on ASM3 and modified Bio-P module in order to simulate the existing BNR process. Parameter estimation results showed that $Y_{STO,O2}$, $Y_{STO,NO}$, $Y_{H,O2}$, $Y_{H,NO}$, $Y_{PO4}$, ${\mu}_H$, $b_H$, ${\mu}_A$, $q_{PHA}$, $q_{PP}$ and ${\mu}_{PAO}$ were 0.7, 0.64, 0.61, 0.48, 0.31, 3.9, 0.1, 1.35, 4.98, 1.8 and 0.59, respectively. Using the presented model and the estimated parameters, the simulation of the existing BNR process was successfully conducted.

Evaluation on the Biodegradability of the MBT Wastewater (MBT 폐수의 생분해성 평가)

  • Lim, Ji-Young;Park, Jung-hwan;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.86-92
    • /
    • 2016
  • The possibility of the biological treatment of MBT wastewater generated from the vulcanization accelerator manufacturing process was investigated. MBT wastewater is not biodegradable because it hinders the activity of microorganisms, and approximately 10% of the total COD can be removed after a 7 day acclimation period. The optimal conditions of the MBT wastewater for the chemical pre-treatment was pH of 3.5 and the Fenton oxidation with the addition of $Fe^{3+}$ to the wastewater after agitation for 2 hours. The Fenton-treated MBT wastewater showed approximately 20% removal of COD when treated with the activated sludge process for the mixed paper wastewater and Fenton treated wastewater.

Microbial Degradation of Fats and Oils in Industrial Wastewater (유지폐수의 생물학적 처리에 관한 연구)

  • 박춘호;김용기;오평수;유희종
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.88-93
    • /
    • 1991
  • The biodegradable bacteria for fats and oils were isolatcd from soil and wastewater. The isolated strain was designated as LW-27 which had high COD removal rate and biodegr2idability on fats and oils, and was identified as pseudomonas chlrorapihis. The cell viability of LW-27 which produced by vacuum drying at $45^{\circ}C$ for 24 hours was 82%. When the wastewater was mixed with LW-27 agent (0.1g/ day) on the activated sludge unit, the removal rates of COD, BOD and n-hexanc extract of the effluents were about 92.9%, 94.8% and 98.0%, respectively.

  • PDF

Treatment of Wastewater Containing Ethanolamine in Secondary System of Nuclear Power Plant (Ethanolamine이 포함된 원자력발전소 2차계통 폐수처리)

  • Lee, Han Chul
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • ETA (ethanolamine), a pH control agent, has been used as an ammonia substitute in the secondary system of nuclear power plants since 2001. It is impossible to remove ETA from the wastewater treatment system in the nuclear power plant operating currently, because it is the non-biodegradable organics in terms of the environmental. The optimum process and chemicals for the removal of chemical oxygen demand (COD) & N with the field sample were investigated. More than 95% of Ammonium ions, contained much in wastewater, was removed with a diffused aeration system. COD could be removed over 90% through the process that includes the oxidation with mixed peroxidants (sodium persulfate/sodium percarbonate) followed by the physicochemical treatment with coagulants.

Effective Treatment of Wastewater from the Electroplating Plant of Cold-mill by using Microorganism (냉연공장 도금공정에서 발생되는 폐수의 효율적인 미생물 처리에 관한 연구)

  • Kim, Sang-Sik;Kim, Hyung-Jin
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.301-306
    • /
    • 2009
  • This research was carried out to establish the effective treatment condition and characteristic of wastewater from the electroplating plant of cold rolling mill by using microorganism. Alkaline wastewater and acidic heavy metal wastewater accounted for 64%, 30%, respectively, of the total wastewater. Highly concentrated thiocyanate was 53890 mg/L as COD and it was 53% of total COD, even though it was 0.03% of wastewater from the electroplating plant. When treating mixed wastewater with microorganism, it was easy to remove when SCN concentrations of mixed wastewater was 200 mg/L or less. While the treatment effect of COD-causing materials was low at the concentration of 400 mg/L or less, it implies that highly concentrated thiocyanate contains a large amount of slowly biodegradable organics. When treating with mixed wastewater, pH was 7.33 at the beginning, but after 8 hours it increased to 7.99. This is caused by ammonia which is generated when SCN of highly concentrated thiocyanate was degraded by microorganism.

Selection of the Optimum Organic Matter Index for Surface Water Quality Management (지표수 수질관리를 위한 적정 유기물질지표 선정)

  • Han, Dae Ho;Choi, Ji-Yong
    • Journal of Environmental Policy
    • /
    • v.10 no.4
    • /
    • pp.61-80
    • /
    • 2011
  • Through concentrated investments in environmental regulations centered around BOD, which is a biodegradable matter index, and basic environmental infrastructures, national BOD pollution level has continuously improved. Nonetheless, limitations of BOD management system has become evident through nation-wide stagnation and/or increases of refractory organic matters, such as COD, at main drinking water sources, and the need for a new index, which can easily indicate different environmental conditions, has increased. Therefore, this study suggests a new organic management index for a proper management of surface water. $COD_{Cr}$ and TOC were examined as candidates for surface water quality management index, and it was found that TOC was more appropriate than $COD_{Cr}$ as an organic matter management index. Through this study, it was found that TOC possesses following qualities: a more representative index; international acceptability; monitoring program is easier; better availability of analysis techniques; better accuracy and precision of analysis; less time required for analysis; ease of operation; management of disinfection byproducts; connection with present policies; existence of foreign and domestic application case studies; and correlation with water ecosystem.

  • PDF