• Title/Summary/Keyword: biochip

Search Result 163, Processing Time 0.025 seconds

Receptor activator of nuclear factor-κB ligand in T cells and dendritic cells communication

  • Nam, Sun-Young;Jeong, Hyun-Ja
    • CELLMED
    • /
    • v.3 no.1
    • /
    • pp.3.1-3.3
    • /
    • 2013
  • The receptor activator of NF-${\kappa}B$ ligand (RANKL), a member of the tumor necrosis factor ligand family, has extensive functions beyond osteoclast development. RANKL is expressed in many immune cells such as osteoblasts, osteocytes, marrow stromal cells, activated T cells, synovial cells, keratinocytes, and mammary gland epithelial cells as well as in various tissues. The ligation of RANK by RANKL promotes dendritic cells (DCs) survival through prosurvival signals and the up-regulation of the anti-apoptotic proteins Bcl-2 and Bcl-$x_L$ and plays a crucial role in DCs-mediated Th1 differentiation. Therefore, RANKL plays an important role in the regulation of DCs/T cells-mediated specific immunity. This review will briefly inform our current understanding of the role of RANKL signaling in T cells-DCs communication in the immune system.

Estimation of the steps of cardiovascular disease by machine learning based on aptamers-based biochip data (기계학습에 의한 압타머칩 데이터 기반 심혈관 질환 단계의 예측)

  • Kim Byoung-Hee;Kim Sung-Chun;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.85-87
    • /
    • 2006
  • 압타머칩은 (주)제노프라에서 개발한 새로운 개념의 바이오칩으로서, 압타머(aptamer)를 이용하여 혈액중의 특정 단백질군의 상대적인 양의 변화를 측정할 수 있으며, 질병 진단에 바로 응용할 수 있는 도구이다. 본 논문에서는 압타머칩 데이터 분석을 통해 심혈관 질환 환자의 질병 진행 단계를 예측할 수 있음을 보인다. 정상, 안정/불안정성 협심증, 심근경색의 네 단계로 표지된 환자의 혈액 샘플로부터 제작한 (주)제노프라의 3K 압타머칩 데이터를, 일반 DNA 마이크로어레이 분석과 동일한 과정을 거쳐 분류한 결과, 각 단계별 환자샘플이 확연히 구분되는 것을 확인하였다. 분산분석 결과 P-Value를 이용하여 자질 선택을 수행하고, 분류 알고리즘으로는 신경망, 결정트리, SVM, 베이지안망을 적용한 결과. 각 알고리즘별로 50대 남성환자 31개의 샘플에 대하여 $77{\sim}100%$의 정확도로 심혈관 질환의 단계를 구분해내었다.

  • PDF

Development of New Biochip Using Magnetic Force (자기력에 의한 신규 바이오칩의 개발)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.105-108
    • /
    • 2006
  • This paper describes a new constructing method of multifunctional biosensor using many kinds of biomaterials. A metal particle and an array was fabricated by photolithographic. Biomaterials were immobilized on the metal particle. The array and the particles were mixed in a buffer solution, and were arranged by magnetic force interaction and random fluidic self-assembly. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost with Au surface on top. The particles were successfully arranged on the array. The biomaterial activities were detected by chemiluminescence and electrochemical methods.

  • PDF

Development of Next Generation Biochip Using Indicator-free DNA (비수식화 DNA를 이용한 차세대형 바이오칩의 개발)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.71-73
    • /
    • 2006
  • This research aims to develop a multiple channel electrochemical DNA chip using micro- fabrication technology. At first, we fabricated a high integrated type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized by an electrical force. Redox peak of cyclic-voltammogram showed a difference between target DNA and mismatched DNA in the anodic peak current. Therefore. it is able to detect a various genes electrochemically after immobilization of a various probe DNA and hybridization of label-free DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

Fabrication of 2-D Microwell Arrays for Micro ELISA System (초소형 면역 분석기용 이차원적 배열형 마이크로 우물 제작)

  • Lee, Kook-Nyung;Ahn, Si-Hong;Park, Jae-Hyung;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2556-2558
    • /
    • 1998
  • 2-D microwell arrays for micro ELISA (Enzyme-Linked Immuno Solvent Assay) system were fabricated using micromachining technology. The materials for the bottom plate, top plate and sidewall of the microwell were used a #7740 glass, gold and silicon respectively considering bio-compatibility and easy fabrication. Cylindrical or groove shape microwells, which have about $100{\mu}m$ depth and $50{\sim}500{\mu}m$ diameter or width, were arrayed. The fabricated microwell array can be applied to the essential part of a biochip when surface modification is made to immobilize cells or biomolecules on the microwell bottom.

  • PDF

A STUDY ON THE DEVELOPMENT OF ONE-DIMENSIONAL GUI PROGRAM FOR MICROFLUIDIC-NETWORK DESIGN (마이크로 유동 네트워크 설계를 위한 1차원 GUI 프로그램 개발에 관한 연구)

  • Park, I.H.;Kang, S.;Suh, Y.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.86-92
    • /
    • 2009
  • Nowadays, the development of microfluidic chip [i.e. biochip, micro-total analysis system ($\mu$-TAS) and LOC (lab-on-a-chip)] becomes more active, and the microchannels to deliver fluid by pressure or electroosmotic forces tend to be more complex like electronic circuits or networks. For a simple network of channels, we may calculate the pressure and the flow rate easily by using suitable formula. However, for complex network it is not handy to obtain such information with that simple way. For this reason, Graphic User Interface (GUI) program which can rapidly give required information should be necessary for microchip designers. In this paper, we present a GUI program developed in our laboratory and the simple theoretical formula used in the program. We applied our program to simple case and could get results compared well with other numerical results. Further, we applied our program to several complex cases and obtained reasonable results.

A Numerical Simulation on Mixing Enhancement by Inlet Flow Pulsation in a Micro Conduit (마이크로 유로에서 맥동유동에 의한 혼합촉진에 관한 수치해석)

  • Kim, Seo-Young;Rhee, Gwang-Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.231-237
    • /
    • 2003
  • A numerical study has been conducted to investigate the effect of an inlet flow pulsation on mixing of two solutions with different concentrations in a micro conduit. We treat an unsteady, incompressible and two-dimensional flow through a micro conduit by adopting the momentum equations with the electrostatic force due to streaming current and the concentration equation. The feasibility of the inlet flow pulsation to enhance the mixing process inside the micro conduit is carefully examined by varying the inlet pulsation frequency. When a low-frequency pulsation is induced at the inlet, the interface between two solutions with different concentrations becomes wavy, which results in mixing enhancement. As the pulsation frequency increases, the waviness of the interface becomes meager, and the concentration gradients at the interface approach the value for the non-pulsating steady flow.

  • PDF

Development of New Biochip using Magnetic Interaction and Random Fluidic Self-assembly (자기력과 Random Fluidic Self-assembly에 의한 신규 바이오칩의 개발)

  • Choi, Yong-Sung;Kwon, Young-Soo;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.615-621
    • /
    • 2004
  • This paper describes a new constructing method of multifunctional biosensor using many kinds of biomaterials. A metal particle and an array was fabricated by photolithographic. Biomaterials were immobilized on the metal particle. The array and the particles were mixed in a buffer solution, and were arranged by magnetic force interaction and random fluidic self-assembly. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost with Au surface on top. The particles were successfully arranged on the array. The biomaterial activities were detected by chemiluminescence and electrochemical methods.

Development of 3-Dimensional Biochip Using Magnetic Interaction and Self-Assembly (자기력과 self-assembly에 의한 3차원 바이오칩의 개발)

  • Choi, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo;Tamiya, E.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1909-1911
    • /
    • 2003
  • This research describes a new constructing method of multifunctional biosensor using many kinds of biomaterials. A metal particle and an array was fabricated by photolithographic. Biomaterials were immobilized on the metal particle. The array and the particles were mixed in a buffer solution, and were arranged by magnetic force interaction and self-assembly. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost with Au surface on top. The particles were successfully arranged on the array. The biomaterial activities were detected by chemiluminescence and electrochemical methods.

  • PDF

Development of New Biochip and Genome Detection Using an Non-labeling Target DNA (차세대형 바이오칩의 개발 및 비수식화 표적 DNA를 이용한 유전자 검출)

  • Choi, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo;Kawai, Tomoji
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.51-53
    • /
    • 2002
  • This research aims to develop a multiple channel electrochemical DNA chip using micro-fabrication technology. At first, we fabricated a high integrated type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the sold electrodes. Then target DNAs were hybridized by an electrical force. Redox peak of cyclic-voltammogram showed a difference between target DNA and mismatched DNA in the anodic peak current. Therefore, it is able to detect a various genes electrochemically after immobilization of a various probe DNA and hybridization of label-free DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF