• Title/Summary/Keyword: biochemical model

Search Result 402, Processing Time 0.03 seconds

Informatics Network Representation Between Cells Using Probabilistic Graphical Models (확률적 그래프 모델을 이용한 세포 간 정보 네트워크 추론)

  • Ra, Sang-Dong;Shin, Hyun-Jae;Cha, Wol-Suk
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.231-235
    • /
    • 2006
  • This study is a numerical representative modeling analysis for the application of the process that unravels networks between cells in genetics to web of informatics. Using the probabilistic graphical model, the insight from the data describing biological networks is used for making a probabilistic function. Rather than a complex network of cells, we reconstruct a simple lower-stage model and show a genetic representation level from the genetic based network logic. We made probabilistic graphical models from genetic data and extends them to genetic representation data in the method of network modeling in informatics

Photopolymerization Kinetics of Urethane-acrylate Oligomer (우레탄-아크릴레이트 올리고머의 광경화 거동)

  • Kim, In-Beom;Song, Bong Jin;Lee, Myung Cheon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.33-36
    • /
    • 2006
  • The kinetics of photopolymerization of urethane-acrylate oligomer which has many applications in photopolymerizable adhesives was analysed to investigate the influence of polymerization temperature and functionality of oligomer using the autocatalytic model. It was revealed that the maximum polymerization rate decreased as the polymerization temperature increased. The reaction rate constant, k, showed little change with the increase in polymerization temperature, while exponents m and n exhibited an increase. These results could be related to the diffusion and mobility restriction of reactive species during the cross-linking reaction. The decrease in photopolymerization rate with increase of temperature was mainly controlled by the reaction order n.

Inhibitory Effect of Shimotsu-to, a Traditional Chinese Herbal Prescription, on Acute Inflammation in Rats and Guinea Pigs

  • Sakuma, Katsuya;Izumi-Kaji;Masahiko-Ogihara;Katsumi-Yamamoto
    • Archives of Pharmacal Research
    • /
    • v.19 no.2
    • /
    • pp.122-125
    • /
    • 1996
  • We examined the effect of topical application of Shimotsu-to, a traditional Chinese herbal prescription, on carrageenin-induced edema in rats and ultraviolet radiation-induced erythema in guinea pigs. Shimotsu-to (5% in water) markedly suppressed an acute edema of rat hindpaw induced by 1% carrageenin, and was more effective than any other single crude drug componcent of Shimotsu-to, Topical treatment with this prescription also inhibited ultraviolet erythema on the back skin of guinea pigs (a human sunbrun model). These results suggest the therapeutic effect on acute inflammation by topical application of Shimotsu-to.

  • PDF

LRRK2 and membrane trafficking: nexus of Parkinson's disease

  • Hur, Eun-Mi;Jang, Eun-Hae;Jeong, Ga Ram;Lee, Byoung Dae
    • BMB Reports
    • /
    • v.52 no.9
    • /
    • pp.533-539
    • /
    • 2019
  • Recent evidence from genetics, animal model systems and biochemical studies suggests that defects in membrane trafficking play an important part in the pathophysiology of Parkinson's disease (PD). Mutations in leucine-rich repeat kinase 2 (LRRK2) constitute the most frequent genetic cause of both familial and sporadic PD, and LRRK2 has been suggested as a druggable target for PD. Although the precise physiological function of LRRK2 remains largely unknown, mounting evidence suggests that LRRK2 controls membrane trafficking by interacting with key regulators of the endosomal-lysosomal pathway and synaptic recycling. In this review, we discuss the genetic, biochemical and functional links between LRRK2 and membrane trafficking. Understanding the mechanism by which LRRK2 influences such processes may contribute to the development of disease-modifying therapies for PD.

Hybrid 신경망을 이용한 산업폐수 공정 모델링

  • Lee, Dae-Seong;Park, Jong-Mun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.133-136
    • /
    • 2000
  • In recent years, hybrid neural network approaches which combine neural networks and mechanistic models have been gaining considerable interests. These approaches are potentially very efficient to obtain more accurate predictions of process dynamics by combining mechanistic and neural models in such a way that the neural network model properly captures unknown and nonlinear parts of the mechanistic model. In this work, such an approach was applied in the modeling of a full-scale coke wastewater treatment process. First, a simplified mechanistic model was developed based on the Activated Sludge Model No.1 and the specific process knowledge, Then neural network was incorporated with the mechanistic model to compensate the errors between the mechanistic model and the process data. Simulation and actual process data showed that the hybrid modeling approach could predict accurate process dynamics of industrial wastewater treatment plant. The promising results indicated that the hybrid modeling approach could be a useful tool for accurate and cost-effective modeling of biochemical processes.

  • PDF

A biomechanical model of lower extremity for seated operators (착좌시 하지 동작의 생체역학적 모델)

  • 황규성;이동춘;최재호
    • Journal of the Ergonomics Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.81-92
    • /
    • 1992
  • A two-dimensional static biochemical model of lower extremity in the seated posture was developed to assess muscular activities of lower extremity required for a variety of foot pedal operations. We found that the double linear optimization method that has been used for modelling articulated body segments does no predict the forces generated by biarticular muscles reasonably, so the revised double linear optimization scheme was used to consider the synergistic effects of biarticular muscles in our model, assuming that the muscle forces are distributed proportionally based on their physiological cross sectional area. The model incorporated three rigid body se- gments with six muscles to represnet lower extremity. For the model validation, three male subjects performed the experiments in which EMG activities of six lower extremity muscles were measured. Predicted muscle forces were compare with the corresponding EMG amplitudes and it showed no statistical difference. The model being developed can be used to design and assess pedal and foot-related tool design.

  • PDF

Prediction of Landfill Settlement Using Gas Generation Characteristics (매립장의 발생가스특성을 이용한 매립장 침하예측)

  • 안태봉;박대효;공인철
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.29-39
    • /
    • 2004
  • The prediction of landfill settlement is very important for managing land properly, especially in small national land like Korea. It is difficult to express settlement using the consolidation theory because biochemical decomposition is main reason of settlement, and organic materials in landfill are decomposed far long time. In this study, LFG (Landfill Gas) generation characteristics are studied to find long-term settlement analysing model landfills. Two lysimeters are made; one is leachate recycled, and the other is not leachate recycled. The relationship between gas generation and settlement is analysed as a function of time. A mathematical gas generation model is suggested to predict long-term settlement due to biodegradation, and correction coefficient is recommended for long term settlement through model tests. The leachate recirculation system is more effective to accelerate landfill settlement. The appropriate coefficients of gas correction for non-recycled leachate model are 1.4 and 1.7 for recycled system from tests showing 22% of acceleration.

Applicability of the WASP8 in simulating river microplastic concentration (WASP8 모형의 하천 미세플라스틱 모의 적용성 검토)

  • Kim, Kyungmin;Park, Taejin;Jeong, Hanseok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.5
    • /
    • pp.337-345
    • /
    • 2023
  • Monitoring river microplastics is a challenging task since it is a time-consuming and high-cost process. The use of a physical model to have a better understanding of river microplastics' behaviors can complement the challenging monitoring process. However, there have been very limited studies on modeling river microplastics. In this study, therefore, we evaluated the applicability of one commonly used river water quality model, i.e., the Water Quality Analysis Simulation Program (WASP), in simulating the microplastic concentration in the river environment. We simulated the microplastic concentration in the Anyangcheon stream using the WASP's biochemical oxygen demand (BOD) and suspended solid (SS) variables as possible surrogate variables for the microplastics. Simulation analyses indicate that the SS state variable performs better than the BOD state variable to mimic the observed concentrations of microplastics. This is because of the characteristics of each water quality parameter; the BOD variable, a biochemical indicator, is inappropriate for modeling the behaviors of microplastics, which have generally constant biochemical features. In contrast, the SS variable, which has similar physical behaviors, followed the observed patterns of the microplastic concentrations well. To build a more advanced and accurate model for simulating the microplastic concentration, comprehensive and long-term monitoring studies of the river microplastics under different environmental conditions are needed, and the unit of microplastic concentration should be carefully addressed before its modeling application.

Rigorous Model for Spherical Cell-support Aggregate

  • Moon, Seung-Hyeon;Lee, Ki-Beom;Satish J. Paruekar
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.42-50
    • /
    • 2001
  • The activity of immobilized cell-support particle aggregates is influenced by physical and biochemical elements, mass transfer, and physiology. Accordingly, the mathematical model discussed in this study is capable of predicting the steady state and transient concentration profiles of the cell mass and substrate, plus the effects of the substrate and product inhibition in an immobilized cell-support aggregate. The overall mathematical model is comprised of material balance equations for the cell mass, major carbon source, dissolved oxygen, and non-biomass products in a bulk suspension along with a single particle model. A smaller bead size and higher substrate concentration at the surface of the particle, resulted in a higher supply of the substrate into the aggregate and consequently a higher biocatalyst activity.

  • PDF

Alternatives for Quantifying Wetland Carbon Emissions in the Community Land Model (CLM) for the Binbong Wetland, Korea.

  • Eva Rivas Pozo;Yeonjoo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.413-413
    • /
    • 2023
  • Wetlands are a critical component of the global carbon cycle and are essential in mitigating climate change. Accurately quantifying wetland carbon emissions is crucial for understanding and predicting the impact of wetlands on the global carbon budget. The uncertainty quantifying carbon in wetlands may comes from the ecosystem's hydrological, biochemical, and microbiological variability. The Community Land Model is a sophisticated and flexible land surface model that offers several configuration options such as energy and water fluxes, vegetation dynamics, and biogeochemical cycling, necessitating careful consideration for the alternative configurations before model implementation to develop a practical model framework. We conducted a systematic literature review, analyzing the alternatives, focusing on the carbon stock pools configurations and the parameters with significant sensitivity for carbon quantification in wetlands. In addition, we evaluated the feasibility and availability of in situ observation data necessary for validating the different alternatives. This analysis identified the most suitable option for our study site, the Binbong Wetland, in Korea.

  • PDF