• Title/Summary/Keyword: biochemical factor

Search Result 383, Processing Time 0.024 seconds

Effects of replacing fish oil with palm oil in diets of Nile tilapia (Oreochromis niloticus) on muscle biochemical composition, enzyme activities, and mRNA expression of growth-related genes

  • Ayisi, Christian Larbi;Zhao, Jinliang;Yame, Chen;Apraku, Andrews;Debra, Grace
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.11
    • /
    • pp.25.1-25.9
    • /
    • 2019
  • Background: Due to the continuous demand for fish coupled with decline in capture fisheries, there is the need to increase aquaculture production to meet the demand. Aquaculture is faced with high cost of feeding since fish oil and fish meal are expensive. In view of this, there are calls to explore alternatives that are cheap and reliable. Objectives: This study on Oreochromis niloticus was conducted to evaluate the effects of replacing fish oil (FO) with palm oil (PO) at 0%, 25%, 50%, 75%, and 100% on muscle fatty acid and proximate composition as well as growthrelated enzyme activities and mRNA expression. Methods: Oreochromis niloticus were fed five experimental diets (33% crude protein and 10% crude lipid) for 8 weeks. Feed had variation in fish oil and palm oil contents. After the 8 weeks feeding trial, five fish were sampled from each tank (15 from each treatment) and euthanized using an excess dose of tricaine methane sulfonate (MS-222 at 200 mg/L). Fatty acid and enzyme activities were analyzed using standard protocols. Also, RT-qPCR was used to quantify the expression levels of selected growth-related genes. Results: Fish fed 25% PO recorded the least muscle protein content and was significantly lower than the group fed 100% PO. Paired box protein 7 (Pax-7) enzyme activity was significantly higher in the group fed 50% PO compared to the groups fed 25% PO and 100% PO, while caplain-3 (Capn-3) was significantly lower in the group fed 0% PO compared to all other groups. There was a significant difference among treatments with respect to mRNA expression of Pax-7 and Capn-3. Group fed 25% PO had significantly lower mRNA expression of Pax-7, while the group fed 75% PO recorded significantly higher mRNA expression of Capn-3 compared to groups fed 0% PO, 25% PO, and 100% PO. Pearson's correlation analysis revealed that Igf-I and Igf-II mRNA expression have significant correlation with n-3 polyunsaturated fatty acids content in muscle. Conclusion: The results suggest muscle protein content could be modified if FO is replaced with PO. Also, mRNA expression of Pax-7 and Capn-3 is affected by replacing FO with PO.

Effect of Acute High-intensive Swimming Exercise on Blood Electrolytes and Metabolites (단기간 고강도의 수영운동이 혈액 이온 및 대사산물에 미치는 영향)

  • Kim, Shang-Jin;Park, Hye-Min;Shin, Se-Rin;Jeon, Seol-Hee;Kim, Jin-Shang;Kang, Hyung-Sub
    • Journal of Veterinary Clinics
    • /
    • v.27 no.3
    • /
    • pp.262-267
    • /
    • 2010
  • Magnesium ($Mg^{2+}$) is an essential co-factor for over 325 physiological and biochemical processes so that plays a central role of neuronal activity, cardiac excitability, neuromuscular transmission, muscular contraction, vasomotor tone, and blood pressure significantly related to physical performance. However, only limited information on blood ionized $Mg^{2+}$ ($iMg^{2+}$) regarding to physical exercise is available and the data from blood total $Mg^{2+}$ detection are inconsistent. This present study investigated the changes of blood $iMg^{2+}$ correlated with metabolic demands during acute high-intensive exhaustive physical exercise in rats. After exhausted swimming (3-4 hours), blood pH, glucose, $HCO_3{^-}$, oxygen and ionized $Ca^{2+}$ ($iCa^{2+}$) were significantly decreased, whereas lactate, carbon dioxide, $iMg^{2+}$, ionized $Na^+$ and ionized $K^+$ were significantly increased. During the exhausted swimming, the changes in $iMg^{2+}$ showed a significant negative correlation with changes in pH, glucose, $HCO_3^-$ and $iCa^{2+}$, however a significant negative correlation with changes in lactate and anionic gap. It is concluded that the acute high-intensive exhaustive physical exercise could produced hypermagnesemia, an increase in blood $iMg^{2+}$ via stimulation of $iMg^{2+}$ efflux following increase in intracellular $iMg^{2+}$ from muscle induced by metabolic and respiratory acidosis.

Twenty-Eight-Day Repeated Inhalation Toxicity Study of Nano-Sized Neodymium Oxide in Male Sprague-Dawley Rats

  • Kim, Yong-Soon;Lim, Cheol-Hong;Shin, Seo-Ho;Kim, Jong-Choon
    • Toxicological Research
    • /
    • v.33 no.3
    • /
    • pp.239-253
    • /
    • 2017
  • Neodymium is a future-oriented material due to its unique properties, and its use is increasing in various industrial fields worldwide. However, the toxicity caused by repeated exposure to this metal has not been studied in detail thus far. The present study was carried out to investigate the potential inhalation toxicity of nano-sized neodymium oxide ($Nd_2O_3$) following a 28-day repeated inhalation exposure in male Sprague-Dawley rats. Male rats were exposed to nano-sized $Nd_2O_3-containing$ aerosols via a nose-only inhalation system at doses of $0mg/m^3$, $0.5mg/m^3$, $2.5mg/m^3$, and $10mg/m^3$ for 6 hr/day, 5 days/week over a 28-day period, followed by a 28-day recovery period. During the experimental period, clinical signs, body weight, hematologic parameters, serum biochemical parameters, necropsy findings, organ weight, and histopathological findings were examined; neodymium distribution in the major organs and blood, bronchoalveolar lavage fluid (BALF), and oxidative stress in lung tissues were analyzed. Most of the neodymium was found to be deposited in lung tissues, showing a dose-dependent relationship. Infiltration of inflammatory cells and pulmonary alveolar proteinosis (PAP) were the main observations of lung histopathology. Infiltration of inflammatory cells was observed in the $2.5mg/m^3$ and higher dose treatment groups. PAP was observed in all treatment groups accompanied by an increase in lung weight, but was observed to a lesser extent in the $0.5mg/m^3$ treatment group. In BALF analysis, total cell counts, including macrophages and neutrophils, lactate dehydrogenase, albumin, interleukin-6, and tumor necrosis factor-alpha, increased significantly in all treatment groups. After a 4-week recovery period, these changes were generally reversed in the $0.5mg/m^3$ group, but were exacerbated in the $10mg/m^3$ group. The lowest-observed-adverse-effect concentration of nano-sized $Nd_2O_3$ was determined to be $0.5mg/m^3$, and the target organ was determined to be the lung, under the present experimental conditions in male rats.

Optimal Culture Conditions on the Keratinase Production by Bacillus sp. SH-517. (Bacillus sp. SH-517에 의한 keratinase의 생성 최적 배양 조건)

  • Bang, Byung-Ho;Rhee, Moon-Soo;Lim, Ki-Hwan;Yi, Dong-Heui
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.839-844
    • /
    • 2008
  • A strain SH-517 which produce extracellular keratinase, was isolated from the soil of a poultry waste and a poultry factory. An isolate SH-517 was identified as Bacillus sp. based on its morphological and biochemical characteristics. The optimal culture conditions for the production of keratinase by Bacillus sp. SH-517 were investigated. The optimal medium composition for keratinase production was determined to be 2.0% chicken feather as carbon source, 0.5% beef extract as organic nitrogen source, 0.5% $KNO_3$ as inorganic nitrogen source and 0.06% KCl, 0.05% NaCl, 0.04% $KH_2PO_4$, 0.03% $K_2HPO_4$ as mineral source and 0.01% yeast extract as growth factor. The optimal temperature and pH of medium were shown $40^{\circ}C$ and 8.5 with shaking culture (180 rpm/min), respectively. The maximum keratinase production reached maximum of 125 units/ml/min after 42 hr of cultivation under the optimal culturing conditions.

Influence of Nanostructured TiO2 Electrode Fabricated with Acid-treated Paste on the Photovoltaic Efficiency of Dye-Sensitized Solar Cells (산처리된 페이스트로 제조한 나노 구조체 TiO2 전극이 염료감응형 태양전지의 효율에 미치는 영향)

  • Lee, Jae-Wook;Hwang, Kyung-Jun;Roh, Sung-Hee;Kim, Sun-Il
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.356-360
    • /
    • 2007
  • Recently, dye sensitized solar cells (DSSCs) composed of nanoporous $TiO_2$, light-sensitive dyes, electrolytes, and counter electrode have been received much attention. Nanostructured particles with higher surface area for the higher adsorption of Ru (II) dye are required to increase the quantity of light absorption. Also, it has been reported that the key factor to achieve high energy conversion efficiency in the photoelectrode of DSSC is the heat treatment of $TiO_2$ paste with acid addition. In this work, we investigated the influence of acid treatment of $TiO_2$ solar cell on the photovoltaic performance of DSSC. The working electrodes fabricated in this work were characterized by X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), field emission scanning electron microscope (FE-SEM), and atomic force microscope (AFM). In addition, the influence of nanostructured photoelectrode fabricated with the acid-treated paste on the energy conversion efficiency was investigated on the basis of photocurrent-potential curves. It was found that the influence of acid-treated paste on the photovoltaic efficiency was significant.

Suppression of the Expression of Cyclooxygenase-2 Induced by Toll-like Receptor 2, 3, and 4 Agonists by 6-Shogaol (6-Shogaol의 Toll-like receptor 2, 3, 4 agonists에 의해서 유도된 cyclooxygenase-2 발현 억제)

  • Kim, Jeom-Ji;An, Sang-Il;Lee, Jeon-Su;Yun, Sae-Mi;Lee, Mi-Yeong;Yun, Hyeong-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.332-336
    • /
    • 2008
  • Ginger is widely used as a traditional herbal medicine. Both ginger and its extracts have been used to treat many chronic inflammatory conditions via the inhibition of nuclear factor-kappa B (NF-${\kappa}B$) activation, which results in the suppression of cyclooxygenase-2 (COX-2) expression. However, the mechanisms as to how ginger extracts mediate their health effects are largely unknown. Toll-like receptors (TLRs) trigger anti-microbial innate immune responses, recognizing conserved microbial structural molecules that are known as pathogen-associated molecular patterns. All TLR signaling pathways culminate in the activation of NF-${\kappa}B$. The activation of NF- ${\kappa}B$ leads to the induction of inflammatory gene products, including cytokines and COX-2. This study reports the biochemical evidence that 6-shogaol, an active compound in ginger, inhibits NF-${\kappa}B$ activation and COX-2 expression induced by TLR2, TLR3, and TLR4 agonists. Furthermore, 6-shogaol inhibited NF-${\kappa}B$ activation induced by the following downstream signaling components of the TLRs: MyD88, $IKK{\beta}$, and p65. These results imply that ginger can modulate immune responses that could potentially modify the risk of many chronic inflammatory diseases.

A Study on the Leaching of Heavy Metals by Municipal Solid Waste Landfill Leachate (폐기물 매립지 침출수에 의한 중금속 용출에 관한 연구)

  • Jung, Jong-Gwan;Jang, Won;Park, Young-Suk
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.1
    • /
    • pp.105-110
    • /
    • 1997
  • Sanitary landfill is a general method as a final disposal of municipal solid waste(MSW), therefore leachate characteristics are very various as lime goes by because of highly concentrated organic acids are contained non biodegradable COD. So it is hard to abide by the mandatory standards of discharge eventhough applying the physicochemical and biological processes to treat the leachate. The process of treating leachate are determined by the degree of removal and components, but they are highly contained organic materials. It is a removal method to use jointly with the physicochemical process if the hard and fast rule is needed. The critical components of material are COD, ammonia, salts and heavy metals in the case of treating biologically. Biological process is to use metabolism of microorganism, therefore it is a desirable condition which heavy metals are not contained, because they acting as an inhibitor of enzyme. Of these are contained, organic decomposition and synthetic function of microorganisms decrease significantly. Consequently, this research paper lays emphasis on the concentration of heavy metals in leachate and for the purpose of forecasting the factors which are affecting the leaching of metalic waste in some degree, experimented the various reacting conditions. 1. When the concentration of heavy metals in leachate is in comparison with the level eluted after reaction, at pH 7.9 the result of reaction for PCB to CCL scrap showed that Zn, Mn, Cu was more eluted 11.6 times, 340.3 times, and 2,705.5 times respectively than the leachate undiluted solution. 2. At the condition of strong acid pH 4.7, the concentration of heavy metals in EM undiluted solution showed that Zn, Mn, Cu was more eluted 26.5 times, 147.3 times, and 3,656.3 times respectively than leachate undiluted solution. 3. When the ratio leachate to EM was 50 vs 50(V/V%), Mn was more eluted 198.7 times than leachate undiluted solution, but Zn and Cu do not show the meaningful results. 4. The color of landfill leachate was black-brown. And fulvic acid that is main ingredient of NBD COD contained, oxygen of 44~50%. For that reason, I estimated that the level of Zn, Mn, Cu was higher than the case of leachate. 5. COD of leachate from general landfill is difficult to remove. Because the solution of heavy metals is improved by the character of leachate(pH & ingredient of oxygen etc.) hence the Mn, Cu, Zn act as disturbing factor, the biochemical treatment is hard. Therefore the type of PCB & CCL scrap, iron, aluminum contained metals need to previously separate from general wastes as much as possible.

  • PDF

The Antiapoptic Effects of Hominis Placenta Extract

  • Seo, Jung-Chul;Chung, Joo-Ho;Ahn, Byoung-Choul
    • Journal of Pharmacopuncture
    • /
    • v.4 no.1
    • /
    • pp.123-124
    • /
    • 2001
  • Purpose. Free radicals are implicated in the pathophysiology of aging, ischemic injury and neurodegenerative disorders. To deform]no whether Hominis Placenta extract prevents $H_2O_2$-induced apoptosis, we have performed morphological and biochemical analyses for the detection of apoptotic phenomena in the pineal tumor cell line $PGT-{\beta}$ We have also peformed cytochemical and immunocytochemical analyses for the detection of changes in nitric oxide synthase (NOS) activity and estimated the expression . of apoptotic genes using reverse transcription-polymerase chain reaction (RT-PCR) Methods. $PGT-{\beta}\;cells$ were pretreated with Hominis Placenta extracts $(0,\;10^{-2}\;{\mu}g/ml)$ for 2 hours and then exposed to $H_2O_2\;(0,\;50\;{\mu}M)$ for 3 hours. Appearance of apoptotic characteristics were monitored using 4, 6-diamidino-2-phenylindole dihydrochloride (DAPI) staining assay, terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) assay and flow cytometric analysis. NOS activity was measured by NADPH-diaphorase cytochemistry. Expression of inducible NOS (iNOS) and nuclear factor kappa B (NF k B) was assessed via immunocytochemistry. The expression of apoptotic genes was examined by RT-PCR. Results. After 3 flours of exposure to $H_2O_2$, it was shown that $PGT-{\beta}\;cells$ treated with $H_2O_2(50\;{\mu}M)$ exhibit classical apoptotic features and increases in NOS activity and caspase-3 expression. Treatment with Hominis Placenta extract resulted in a reduced occurrence of apoptotic features. DAPI staining, TUNEL and flow cytometric assays revealed decreases in the occurrence of nuclear fragmentation and in the sub-Gl fraction in the $PGT-{\beta}\;cells$ treated with Hominis Placenta extract. Cells treated with Hominis Placenta extract also showed lower activity of NADPH-diaphorase and immunoreactivities of both iNOS and NF k B than those of $H_2O_2$-treated cells which were not treated with Hominis Placenta extract. By RT-PCR, it was shown that the level of caspase-3 mRNA was derreased In the cells treated with Hominis Placenta . extract. Conclusions. This study shows that Hominis Placenta extract prevents $H_2O_2$-induced apoptosis in $PGT-{\beta}\;cells$; inhibitions of iNOS and caspnse-3 are possible mechanisms of the protection against apoptosis.

Leaf Photosynthesis as Influenced by Mesophyll Cell Volume and Surface Area in Chamber-Grown Soybean (Glycine max) Leaves (중엽세포의 체적 및 표면적과 콩잎의 광합성 능력간 관계)

  • Jin Il, Yun;S. Elwynn, Taylor
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.4
    • /
    • pp.353-359
    • /
    • 1988
  • Variations in photosynthetic capacities of leaves differing in thickness were explained on the basis of relationships between gas exchange and internal leaf structure. The relative importance of gas diffusion and of biochemical processes as limiting for leaf photosynthesis was also determined. Mesophyll cell surface was considered to be the limiting internal site for gas diffusion. and cell volume to be indicative of the sink capacity for CO$_2$ fixation. Increases in cell surface area were assumed to reduce proportionately mesophyll resistance to the liquid phase diffusion of CO$_2$. Increased cell volume was thought to account for a proportional increase in reaction rates for carboxylation, oxygenation. and dark respiration. This assumption was tested using chamber-grown Glycine max (L.) Merr. cv. Amsoy plants. Plants were grown under 200, 400, and 600 ${\mu}$mol photons m$\^$-2/ s$\^$-1/ of PAR to induce development of various leaf thickness. Photosynthetic CO$_2$ uptake rates were measured on the 3rd and 4th trifoliolate leaves under 1000 ${\mu}$mol photons m$\^$-2/ s$\^$-1/ of PAR and at the air temperature of 28 C. A pseudo -mechanistic photosynthesis model was modified to accommodate the concept of cell surface area as well as both cell volume and surface area. Both versions were used to simulate leaf photosynthesis. Computations based on volume and surface area showed slightly better agreement with experimental data than did those based on the surface area only. This implies that any single factor, whether it is photosynthetic model utilized in this study was suitable for relating leaf thickness to leaf productivity.

  • PDF

Isolation and Identification of Pathogenic Bacteria from Spinach (시금치로부터 병원성세균의 분리 및 동정)

  • Kim, Hye-Jung;Kim, Young-Hoon;Lee, Dong-Sun;Paik, Hyun-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.97-102
    • /
    • 2003
  • Raw and washed spinaches were tested to evaluate the incidences of Aeromonas hydrophila, Escherichia coli O157:H7, Plesiomonas shigelloides, Pseudomonas aeruginosa, Salmonella spp., Shigella spp., Yersinia enterocolitica, Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Listeria monocytogenes, and Staphylococcus aureus. Four pathogenic bacteria were isolated from spinach samples, and identified by morphological and biochemical methods, including API and ATB identification systems. Isolates from MacConkey, Cereus Selective, Clostridium Perfringens, and Baird-Parker agar media were in 99.9, 99.8, 99.9, and 97.8% agreements with A. hydrophila, B. cereus, C. perfringens, and S. aureus at the species level, respectively. SET-RPLA revealed, among the five strains of S. aureus isolates, two produced type A enterotoxin. All five strains of B. cereus isolates produced enterotoxin as revealed with CRET-RPLA.