• 제목/요약/키워드: biochemical factor

검색결과 381건 처리시간 0.033초

Guggulsterone Suppresses the Activation of NF-${\kappa}B$ and Expression of COX-2 Induced by Toll-like Receptor 2, 3, and 4 Agonists

  • Ahn, Sang-Il;Youn, Hyung-Sun
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1294-1298
    • /
    • 2008
  • Toll-like receptors (TLRs) induce innate immune responses recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$). The activation of NF-${\kappa}B$ leads to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Guggul has been used for centuries to treat a variety of diseases. Guggulstreone, one of the active ingredients in guggul, has been used to treat many chronic diseases. However, the mechanism as to how guggulsterone mediate the health effects is largely unknown. Here, we report biochemical evidence that guggulsterone inhibits the NF-${\kappa}B$ activation and COX-2 expression induced by TLR2, TLR3, and TLR4 agonists. Guggulsterone also inhibits the NF-${\kappa}B$ activation induced by downstream signaling components of TLRs, myeloid differential factor 88 (MyD88), $I{\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$), and p65. These results imply that guggulsterone can modulate the immune responses regulated by TLR signaling pathways.

Biochemical Characterization of a Putative Calcium Influx Factor as a Diffusible Messenger in Jurkat Cells, Xenopis Oocytes, and Yeast

  • Kim, Hak-Yong
    • Animal cells and systems
    • /
    • 제7권1호
    • /
    • pp.75-79
    • /
    • 2003
  • Highly purified high performance thin layer chromatography (HPTLC) fractions containing a putative calcium influx factor (CIF) were prepared from the Jurkat cells and Xenopus oocytes in which $Ca^{2+}$ stores were depleted by thapsigargin treatment and from the yeast in which intracellular $Ca^{2+}$ stores were also depleted by genetic means. Microinjection of the fractions has been shown to elicit $Ca^{2+}$ dependent currents in Xenopus oocytes. The nature of the membrane currents evoked by the putative CIF appeared to be carried by chloride ions since the current was blocked by the selective chloride channel blocker 1 mM niflumic acid and its reversal potential was about -24 mV. Injection of the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N, N, N',N'-tetraacetic acid (BAPTA) eradicated the current activities, suggesting the current responses are entirely $Ca^2$-dependent. Moreover, the currents were sensitive to the removal of extracellular calcium, indicating the dependence on calcium entry through the plasma membrane calcium entry channels. CIF activities were insensitive to protease, heat, and acid treatments and to Dische-reaction whereas the activities were sensitive to nucleotide pyrophosphatase and hydrazynolysis. The fraction might have a sugar because it was sensitive to Molisch test and Seliwaniff's resorcinol reaction. From the above results, CIF as a small and stable molecule seems to have pyrimidine, pyrophosphate, and a sugar moiety.oiety.

Serum Tumor Markers, Hypoxia-Inducible factor-1α HIF-1α and Vascular Endothelial Growth Factor, in Patients with Non-small Cell Lung Cancer Before and after Intervention

  • Liang, Jun;Qian, Ying;Xu, Dan;Yin, Qun;Pan, Hui-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3851-3854
    • /
    • 2013
  • Objective: To explore changes in the serum tumor makers, hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) and vascular endothelial growth factor (VEGF) level and their relations in patients with non-small cell lung cancer (NSCLC) before and after intervention. Materials and Methods: Forty patients with NSCLC and 40 healthy individuals undergoing physical examination in our hospital provided the observation and control groups. HIF-$1{\alpha}$ and VEGF levels in serum were detected by enzyme-linked immuno-sorbent assay (ELISA) in the observation group before and after intervention and in control group on the day of physical examination, along with serum carcino-embryonic antigen (CEA), neuron-speci ic enolase (NSE) and squamous cell carcinoma antigen (SCC) levels in the observation group with a fully automatic biochemical analyzer. Clinical effects and improvement of life quality in the observation group were also evaluated. Results: The total effective rate and improvement of life quality after treatment in observation group were 30.0% and 32.5%, respectively. Serum HIF-$1{\alpha}$ and VEGF levels in the control group were lower than that in observation group (p<0.01), but remarkably elevatedafter intervention (p<0.01). In addition, serum CEA, NSE and SCC levels were apparently lowered by treatment (p<0.01). Serum HIF-$1{\alpha}$ demonstrated a positive relation with VEGF level (p<0.01) and was inversely related with CEA, NSE and SCC levels (p<0.01). Conclusions: Significant correlations exist between marked increase of serum HIF-$1{\alpha}$ and VEGF levels and decrease of indexes related to hematological tumor markers in NSCLC patients after intervention.

한국 청소년의 우유섭취 빈도에 따른 혈액 생화학적 특성 및 영양 섭취: 2010~2011 국민건강영양조사 자료를 이용하여 (Biochemical Characteristics and Dietary Intake according to the Frequency of Milk Consumption in Korean Adolescents: Data from the 2010~2011 Korea National Health and Nutrition Examination Survey)

  • 김지현;김숙배
    • 대한지역사회영양학회지
    • /
    • 제25권6호
    • /
    • pp.485-501
    • /
    • 2020
  • Objectives: The purpose of this study was to examine the biochemical characteristics and dietary intake of adolescents aged 12 to 18 years according to the frequency of milk consumption. Methods: Data from the 2010~2011 Korea National Health and Nutrition Examination Survey was used for the study. The study examined adolescents' (12~18 years) demographic characteristics (house income level, residence region, skipping or not-skipping of breakfast/lunch/dinner, eating-out frequency), anthropometric characteristics (height, weight, weight status), biochemical characteristics (fasting plasma glucose, blood urea nitrogen, creatine, triglycerides, cholesterol, HDL-cholesterol, hemoglobin, hematocrit) and nutrient intakes through quantitative and qualitative evaluation using the Korean Dietary Reference Intakes (KDRI), index of nutrition quality (INQ), nutrition adequacy ratio (NAR) of 3 groups (< 1/week, 1~6/week, ≥ 1/day) according to the frequency of milk consumption. Results: There were significant differences in gender and income levels among the 3 groups. There were no differences in height, weight, and weight status among groups. There were differences in biochemical characteristics and nutrient intake. In boys, there were differences in the mean of BUN and HDL-cholesterol, in quantitative intakes of riboflavin, calcium, phosphorus, potassium by KDRI levels, in qualitative intakes of riboflavin, calcium, phosphorus by INQ and riboflavin, calcium, phosphorus by NAR among 3 groups. In girls, there were differences in the mean of blood urea nitrogen, creatine, HDL-cholesterol, in quantitative intakes of protein, riboflavin, calcium, phosphorus by KDRI levels, in qualitative intakes of riboflavin, calcium, phosphorus by INQ and riboflavin, calcium, phosphorus by NAR among the 3 groups. Conclusions: In Korean adolescents, boys had a higher frequency of milk consumption than girls, and higher the income level, higher the frequency of milk consumption. Consumption of milk appeared to have a positive association with triglycerides, HDL-cholesterol, and indices related to muscle mass. Regular consumption of milk is an important factor in enhancing the intake of riboflavin, calcium, and phosphorus, which adolescents lack. The results of the study indicate a need to prepare an environment and education program to increase milk consumption in adolescents at home and school.

페니트로치온 도태 Yumenoshima 저항성 집파리에 있어서의 파라치온 저항성 메카니즘 (Mechanisms of Parathion Resistance in a Ethyl Fenitrothion-Selected Yumenoshima III Strain of House Flies)

  • 안용준;박정규
    • 한국응용곤충학회지
    • /
    • 제35권3호
    • /
    • pp.254-259
    • /
    • 1996
  • Yumenoshima III 집파리 계통을 ethyl fenitrothion으로 30세대 도태시킨 EF-30 계통에 있어서의 parathion 저항성 메카니즘을 생화학적으로 조사하였다. 아세틸콜린에스테라제 저해활성은 저항성계통과 감수성 SRS 계통간에 커다란 차이를 보여 이 효소의 감수성 저하가 저항성의 주료 메카니즘으로 작용하고 있음을 알 수 있었다. 양 계통에 있어서의 parathion과 paraoxon의 in vitro 분해활성은 미크로좀 및 수용성 분획과 관련이 있으며, 각각 NADPH와 glutathione을 필요로 하였다. 저항성계통은 감수성계통에 비하여 GSH S-transferase 활성이 높아 이 효소가 저항성 메카니즘에 중요한 역할을 하고 있는 것으로 추정되었다. 저항성계통은 parathion에 대하여 101,487배, ethyl parathion에 대하여 25,914배의 저항성비를 나타내어 parathion이 GSH S-transferase의 기질로 작용하고 있음을 알 수 있었다. 이상의 결과로부터 EF-30 계통에 있어서의 저항성 메카니즘에는 수종의 요인이 관여하여 parathion에 대하여 높은 저항성을 나타냄을 알 수 있었으나, 이들 요인이외에 타 요인의 관여를 배제할 수 없었다.

  • PDF

Biochemical Characterization of Adriamycin-Resistance in PC-14 Human Lung Adenocarcinoma Cell Line

  • Yi, Jae-Youn;Hong, Weon-Seon;Son, Young-Sook
    • BMB Reports
    • /
    • 제34권1호
    • /
    • pp.66-72
    • /
    • 2001
  • To investigate the mechanism of adriamycin (ADM) resistance in the ADM resistant subline PC-14/ADM, we examined the expressions of p-glycoprotein (P-gp), topoisomerase I (Topo I) and II (Topo II), glutathione-S-transferases (GSTs), tissue transglutaminase (t-TG), epidermal growth factor receptor (EGFR), and E-cadherin and the activity of superoxide dismutase (SOD) in PC-14 and PC-14/ADM cells. There was no change in the cellular levels of P-gp, Topo I, Topo II, and the two isoforms of GSTs. However, SOD activity in PC-14/ADM cells was 2.38 fold higher than that in PC-14 cells. A marked induction of the t-TG expression was also observed in PC-14/ADM cells. In addition to those changes, expressions of EGFR and E-cadherin were down regulated in PC-14/ADM cells. Therefore, molecular modifications such as an increase in SOD activity, induction of the t-TG expression, and down regulation of EGFR and E-cadherin expressions may play important roles in PC-14/ADM cells during the development of ADM resistance.

  • PDF

Involvement of Cytochrome c Oxidase Subunit I Gene during Neuronal Differentiation of PC12 Cells

  • Kang, Hyo-Jung;Chung, Jun-Mo;Lee, See-Woo
    • BMB Reports
    • /
    • 제30권4호
    • /
    • pp.285-291
    • /
    • 1997
  • It is becoming increasingly evident that significant changes in gene expression occur during the course of neuronal differentiation. Thus, it should be possible to gain information about the biochemical events by identifying differentially expressed genes in neuronal differentiation The PC12 cell line is a useful model system to investigate the molecular mechanism underlying neuronal differentiation and has been used extensively for the study of the molecular events that underlie the biological actions of nerve growth factor (NGF). In this study, we report an application of the recently described mRNA differential display method to analyze differential gene expression during neuronal differentiation. Using this technique, we have identified several cDNA tags expressed differentially during neuronal differentiation. Interestingly, one of these clones was cytochrome c oxidase subunit I (COX I) gene. The differential expression of COX I gene was confirmed by Northern blot analysis as well as RT-PCR. Southern blot analysis of the genomic DNA of PC12 cells revealed that COX I is a single gene. Induction of the oxidative enzyme might reflect the energy requirement in neuronal differentiation.

  • PDF

Cadmium but not Mercury Suppresses NF-$\kappa$B Activation and COX-2 Expression Induced by Toll-like Receptor 2 and 4 Agonists

  • Ahn, Sang-Il;Park, Seul-Ki;Lee, Mi-Young;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • 제5권2호
    • /
    • pp.141-146
    • /
    • 2009
  • Toll-like receptors (TLRs) induce innate immune responses by recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor kappa-B (NF-$\kappa$B) leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Deregulated activation of TLRs can lead to the development of severe systemic inflammation. Divalent heavy metals, cadmium and mercury, have been used for thousands of years. While cadmium and mercury are clearly toxic to most mammalian organ systems, especially the immune system, their underlying toxic mechanism(s) remain unclear. Here, we report biochemical evidence that cadmium, but not mercury, inhibits NF-$\kappa$B activation and COX-2 expression induced by TLR2 or TLR4 agonists, while cadmium does not inhibit NF-$\kappa$B activation induced by the downstream signaling component of TLRs, MyD88. Thus, the target of cadmium to inhibit NF-$\kappa$B activation may be upstream of MyD88 including TLRs themselves, or events leading to TLR activation by agonists.

자외선 경화형 점착제의 접착 및 재박리 특성 (Adhesive and Removable Characteristics of UV Curable Adhesive)

  • 김인범;이명천
    • Korean Chemical Engineering Research
    • /
    • 제46권1호
    • /
    • pp.76-81
    • /
    • 2008
  • 아크릴계 점착제를 합성한 후 이관능성 혹은 육관능성 우레탄-아크릴레이트 올리고머를 혼합하여 자외선 경화형 점착제를 제조하였다. 올리고머 종류 및 함량을 변화시켜 그에 따른 접착력 변화와 재박리 특성을 조사하였다. 자외선 경화전에는 올리고머의 함량의 증가에 따라 박리력이 증가하였으나 자외선 경화 후에는 감소하는 경향을 보였다. 저장 탄성률(G')이 낮을수록 박리력은 증가하지만 점착제 내부의 상용성과 손실계수(tan ${\delta}$) 값에 따라 점착제의 박리정도와 접착력에 영향을 주는 것을 확인할 수 있었다.

Src Redox Regulation: There Is More Than Meets the Eye

  • Chiarugi, Paola
    • Molecules and Cells
    • /
    • 제26권4호
    • /
    • pp.329-337
    • /
    • 2008
  • Src-family kinases are critically involved in the control of cytoskeleton organization and in the generation of integrin-dependent signaling responses, inducing tyrosine phosphorylation of many signaling and cytoskeletal proteins. Activity of the Src family of tyrosine kinases is tightly controlled by inhibitory phosphorylation of a carboxy-terminal tyrosine residue, inducing an inactive conformation through binding with its SH2 domain. Dephosphorylation of C-ter tyrosine, as well as its deletion of substitution with phenylalanine in oncogenic Src kinases, leads to autophosphorylation at a tyrosine in the activation loop, thereby leading to enhanced Src activity. Beside this phophorylation/dephosphorylation circuitry, cysteine oxidation has been recently reported as a further mechanism of enzyme activation. Mounting evidence describes Src activation via its redox regulation as a key outcome in several circumstances, including growth factor and cytokines signaling, integrin-mediated cell adhesion and motility, membrane receptor cross-talk as well in cell transformation and tumor progression. Among the plethora of data involving Src kinase in physiological and pathophysiological processes, this review will give emphasis to the redox component of the regulation of this master kinase.