• Title/Summary/Keyword: biochar

Search Result 177, Processing Time 0.026 seconds

Designing and Creating a Model Garden to Demonstrate Carbon Reduction - Case Study of Carbon Reduction Model Garden at the Sejong National Arboretum - (탄소저감 현장 실증을 위한 모델정원 설계와 조성 - 국립세종수목원 탄소저감 모델 정원을 사례로 -)

  • Park, Byunghoon;Seo, Jayoo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.6
    • /
    • pp.75-87
    • /
    • 2023
  • This study presents an experimental design for demonstrating the role of nature-based solutions to climate change in the landscape and garden sector. The study suggests spatial strategies for a carbon-neutral society and its role as a cultural industry. This paper describes the use of a low-maintenance garden as part of a strategy for carbon reduction with the goal of protecting the environment and forming a carbon-neutral society. To this end, this study involved the design and construction of a realistic model garden to provide scientific data on the functions, spatial elements, and carbon neutrality of carbon-reducing gardens. The target site is located in the Sejong National Arboretum. The test area in which the carbon-reducing function is measured is located in the centre of the site, and other spaces include dry gardens, community gardens, and flower gardens intended for exhibition and relaxation. The experimental area is divided into several smaller areas within which the carbon-reducing effect is analysed according to the amount of biochar installed, the planting density, and the plant species present. The application of facilities and construction methods to promote carbon reduction were based on the method known as '10 types of carbon gardening for the earth'. In the model garden, we employed rainwater utilization facilities and used low-carbon certified wood and local materials. The carbon reduction effect of each facility and construction method is compared and presented here. The results are expected to serve as an important basis for realizing a carbon-neutral society and can be used as a reference in various fields that require sustainable development, such as the garden industry.

Effect of Pore Structure and Heteroelements on Carbon Dioxide Adsorption of Activated Carbon Prepared from Pig Bone (돼지 뼈로부터 제조된 활성탄소의 기공구조 및 이종원소가 이산화탄소 흡착에 미치는 영향)

  • Seo Gyeong Jeong;Chaehun Lim;Seongjae Myeong;Chung Gi Min;Naeun Ha;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.576-583
    • /
    • 2023
  • This study investigated the possibility of new adsorbent materials made from pig bone-based biomass. To this end, the properties of pig bone-based activated carbon (PAC) prepared from animal biomass were investigated, and its carbon dioxide adsorption performance was examined. KOH was used as the activation agent, and the specific surface area increased with increasing activation temperature, and the adsorption efficiency of carbon dioxide also increased. The sample activated at 800 ℃ exhibited the largest specific surface area of 1208.7 m2/g and the highest CO2 adsorption efficiency of 3.33 mmol/g at 273 K, 1 bar. However, the specific surface area and the CO2 adsorption efficiency decreased at activation temperatures above 900 ℃ due to crystallinity changes and overactivation. On the other hand, when the selectivity was calculated using the ideal adsorption solution theory, PAC-900 samples at 273 K and below 0.8 bar showed the best selectivity. These results suggest that the high selectivity of carbon dioxide/nitrogen adsorption at 273 K is due to the carbon dioxide adsorption capacity of hydroxyapatite formed by the decomposition of carbonate when pig bone is activated at 900 ℃ and its crystallinity.

Effects of Oyster Shell Lime on Barley Growth and Soil Microbe in an Upland Soil (패화석이 보리생육과 토양 미생물상에 미치는 영향)

  • Lee, Young-Han;Sonn, Yeon-Kyu;Lee, Seong-Tae;Heo, Jae-Young;Kim, Min-Keun;Kim, Eun-Seok;Song, Won-Doo;Kim, Dae-Ho;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.610-613
    • /
    • 2012
  • Oyster shell has a high content of $CaCO_3$ to be used as a acidic soil amendment. To enhance productivity of barley and soil microbe in an upland soil, oyster shell and calcium-magnesium carbonate were selected as a soil amendments in this study. A field experiment was treated no treatment (hereafter, control), oyster shell lime $3.09Mg\;ha^{-1}$ and $2.38Mg\;ha^{-1}$, and calcium-magnesium carbonate $2.38Mg\;ha^{-1}$ as amount of lime requirement in silt loam soil. The yield of barley from the oyster shell lime treatment was the highest. The protein content of barley was the highest of 11.1% in the calcium-magnesium carbonate, followed by 10.7% for the control, 10.6% for the oyster shell lime $3.09Mg\;ha^{-1}$, and 10.4% for the oyster shell lime $2.38Mg\;ha^{-1}$. Soil pH value was higher than that of control in harvesting stage. In addition, the population of soil bacteria was highest in oyster shell lime $2.38Mg\;ha^{-1}$, actinomycetes was highest in calcium-magnesium $2.38Mg\;ha^{-1}$. We concluded that the oyster shell lime can be effective to restore soil nutrient and microbe balance in an upland soil.

Properties of Quercus variabilis bio-oil prepared by sample preparation (시료 조건에 따른 굴참나무 바이오오일의 특성)

  • Chea, Kwang-Seok;Jo, Tae-Su;Choi, Seok-Hwan;Lee, Soo-Min;Hwang, Hye-Won;Choi, Joon-Weon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.148-156
    • /
    • 2015
  • In this study the differences in the sample size and sample input changes as characteristics of bio-oil oak(Quercus variabilis), the oak 0.5~2.0 mm of the oak weighing 300~900g was processed into bio-oil via fast pyrolysis for 1.64 seconds. In this study, the physico-chemical properties of biooil using oak were investigated. Fast pyrolysis was adopted to increase the bio-oil yield from raw material. Although the differences in sample size and sample input changes in the yield of pyrolysis products were not significantly noticeable, increases in the yield of bio-oil accounted for approximately 60.3 to 62.1%, in the order of non-condensed gas, and biochar. When the primary bio-oil obtained by the condensation of the cooling tube and the seconary bio-oil obtained from the electric dust collector were measured separately, the yield of primary bio-oil was twice as higher than that of the secondary bio-oil. However, HHV (Higher Heating Value) of the secondary bio-oil was approximately twice as higher than that of the primary bio-oil by up to 5,602 kcal/kg. The water content of the primary bio-oil was more than 20% of the moisture content of the secondary bio-oil, which was 10% or less. In addition, the result of the elemental analysis regarding the secondary bio-oil, its primary carbon content was higher than that of the primary bio-oil, and since the oxygen content is low, the water content as well as elemental composition are believed to have an effect on the calorific value. The higher the storage temperature or the longer the storage period, the degree of the viscosity of the secondary bio-oil was higher than that of the primary bio-oil. This can be the attributed to the chemical bond between the polymeric bio-oil that forms during the storage period.

Monitoring Soil Characteristics and Growth of Pinus densiflora Five Years after Restoration in the Baekdudaegan Ridge (백두대간 마루금 복원사업지에서의 5년 경과 후 토양특성 및 소나무 생장 모니터링)

  • Han, Seung Hyun;Kim, Jung Hwan;Kang, Won Seok;Hwang, Jae Hong;Park, Ki Hyung;Kim, Chan-Beom
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.453-461
    • /
    • 2019
  • This study was conducted to monitor the soil characteristics and growth of Pinus densiflora and to determine the effect of soil characteristics on growth rate five years after an ecological restoration project in Baekdudaegan ridge including Ihwaryeong, Yuksimnyeong, and Beoljae sites. The ecological restoration project was executed with the forest of P. densiflora in 2012-2013. In April 2018, we collected soil samples from each site and measured the height and the diameter at breach height (DBH) of P. densiflora. Although there was no significant change of soil pH compared to the early stage of restoration (one year after the project), it was high in Ihwaryeong, and Beoljae with values of 7.7 and 6.4, respectively. Also, the organic matter decreased by 70-80%, and the available phosphorus (P) was unchanged in three restoration sites. The decreased organic matter can be attributed to restriction of inflow and thus decomposition of litter in the early stage after the restoration. The tree height growth rate ($m\;yr^{-1}$) of P. densiflora in Yuksimnyeong was the highest at 1.02, followed by Beolja at 0.75 and Ihwaryeong at 0.17. The height growth rate showed negative relationships with soil pH and cations, including Na and Ca concentrations and a positive relationship with available phosphate. The low growth rate in the Ihwaryeong site, in particular, might result from the poor nutrient availability due to high soil pH and the decrease in water absorption into the root due to high Na and Ca concentrations. The substantial reduction of organic matter after five years indicates that the need for soil improvement using chemical fertilizer and biochar.

Evaluation of Stabilization Capacity for Typical Amendments based on the Scenario of Heavy Metal Contaminated Sites in Korea (국내 중금속 부지오염시나리오를 고려한 안정화제의 중금속 안정화 효율 규명)

  • Yang, Jihye;Kim, Danu;Oh, Yuna;Jeon, Soyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.21-33
    • /
    • 2021
  • The purpose of this study is to determine the order of priority for the use of amendments, matching the optimal amendment to the specific site in Korea. This decision-making process must prioritize the stabilization and economic efficiency of amendment for heavy metals and metalloid based on domestic site contamination scenarios. For this study, total 5 domestic heavy metal contaminated sites were selected based on different pollution scenarios and 13 amendments, which were previously studied as the soil stabilizer. Batch extraction experiments were performed to quantify the stabilization efficiency for 8 heavy metals (including As and Hg) for 5 soil samples, representing 5 different pollution scenarios. For each amendment, the analyses using XRD and XRF to identify their properties, the toxicity characteristics leaching procedure (TCLP) test, and the synthetic precipitation leaching procedure (SPLP) test were also conducted to evaluate the leaching safety in applied site. From results of batch experiments, the amendments showing > 20% extraction lowering efficiency for each heavy metal (metalloid) was selected and the top 5 ranked amendments were determined at different amount of amendment and on different extraction time conditions. For each amendment, the total number of times ranked in the top 5 was counted, prioritizing the feasible amendment for specific domestic contaminated sites in Korea. Mine drainage treatment sludge, iron oxide, calcium oxide, calcium hydroxide, calcite, iron sulfide, biochar showed high extraction decreasing efficiency for heavy metals in descending order. When the economic efficiency for these amendments was analyzed, mine drainage treatment sludge, limestone, steel making slag, calcium oxide, calcium hydroxide were determined as the priority amendment for the Korean field application in descending order.

Comprehensive Review on the Implications of Extreme Weather Characteristics to Stormwater Nature-based Solutions (자연기반해법을 적용한 그린인프라 시설의 극한기후 영향 사례분석)

  • Miguel Enrico L. Robles;Franz Kevin F. Geronimo;Chiny C. Vispo;Haque Md Tashdedul;Minsu Jeon;Lee-Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.353-365
    • /
    • 2023
  • The effects of climate change on green infrastructure and environmental media remain uncertain and context-specific despite numerous climate projections globally. In this study, the extreme weather conditions in seven major cities in South Korea were characterized through statistical analysis of 20-year daily meteorological data extracted fro m the Korea Meteorological Administration (KMA). Additionally, the impacts of extreme weather on Nature-based Solutions (NbS) were determined through a comprehensive review. The results of the statistical analysis and comprehensive review revealed the studied cities are potentially vulnerable to varying extreme weather conditions, depending on geographic location, surface imperviousness, and local weather patterns. Temperature extremes were seen as potential threats to the resilience of NbS in Seoul, as both the highest maximum and lowest minimum temperatures were observed in the mentioned city. Moreover, extreme values for precipitation and maximum wind speed were observed in cities from the southern part of South Korea, particularly Busan, Ulsan, and Jeju. It was also found that extremely low temperatures induce the most impact on the resilience of NbS and environmental media. Extremely cold conditions were identified to reduce the pollutant removal efficiency of biochar, sand, gravel, and woodchip, as well as the nutrient uptake capabilities of constructed wetlands (CWs). In response to the negative impacts of extreme weather on the effectiveness of NbS, several adaptation strategies, such as the addition of shading and insulation systems, were also identified in this study. The results of this study are seen as beneficial to improving the resilience of NbS in South Korea and other locations with similar climate characteristics.