• Title/Summary/Keyword: biochar

Search Result 179, Processing Time 0.029 seconds

Adsorption of Methylene Blue by Soybean Stover and Rice Hull Derived Biochars Compared to that by Activated Carbon (메틸렌블루 제거 시 활성탄과 바이오차(대두줄기와 쌀겨)의 흡착성능 비교)

  • Lee, Gi-Bong;Kim, Hyeon-Joo;Park, Soo-Gyeong;Ok, Yong-Sik;Ahn, Johng-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.291-296
    • /
    • 2016
  • This study investigated the potential use of soybean stover (SS) (0.1-0.5 g/100 mL)and rice hull (RH) (1.5-3.5 g/100 mL) derived biochars for removing methylene blue (100 mg/L) from wastewater compared to activated carbon (AC) (0.1-0.5 g/100 mL). The adsorption equilibrium data were best represented by Langmuir adsorption isotherm. The calculated maximum adsorption capacity was 71.42 mg/g for AC, 30.30 mg/g for SS, and 4.76 mg/g for RH. The adsorption kinetics was found to follow the pseudo-second order kinetics model. The rate constant was 0.0020-0.0065 g/mg.min for AC, 0.0069-0.5787 g/mg.min for SS, and 0.1370-0.3060 for RH. AC and SS biochars showed considerable potential for adsorption.

Environmental Impact Assessment for Development Projects Considering Carbon Sink and Sequestration(I) - Focused on a Solar Power Plant Development Project - (탄소흡수원을 고려한 개발사업 환경영향평가 방안(I) - 태양광발전소 건설사업 사례를 중심으로 -)

  • Hwang, Sang-Il;Park, Sun-Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.625-631
    • /
    • 2010
  • The objective of this work was to investigate how carbon sink and sequestration of vegetation and soil in the development project area can impact the land use plan, in addition to carbon emission capacity of the development project when we conduct environmental impact assessment. Especially, we did this work for a development project of solar power plant which would be constructed in forest area. Through this work, we found that 1) the amount of carbon sink and sequestration largely decreased due to reduction of the green area, 2) in terms of carbon sink and sequestration, conservation of natural green area is better than construction of newly vegetated area, 3) biochar application into soil can become an alternative for increase of carbon sink, and 4) even though a solar power production does hugely reduce carbon emissions and offset the carbon sink and sequestration capacity from the forest, it is necessary to consider the public value of the forest(reduction of heat island, habitat etc.) in siting for development area.

Analysis of Soil Microbial Communities Formed by Different Upland Fields in Gyeongnam Province

  • Kim, Min Keun;Ok, Yong Sik;Heo, Jae-Young;Choi, Si-Lim;Lee, Sang-Dae;Shin, Hyun-Yul;Kim, Je-Hong;Kim, Hye Ran;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.100-106
    • /
    • 2014
  • The present study investigated variations in soil microbial communities by fatty acid methyl ester (FAME) and the chemical properties at 24 sites of upland soils in Gyeongnam Province. The electrical conductivity of the soil under potato cultivation was significantly higher than those of the red pepper and soybean soils (p < 0.05). The gram-negative bacteria community in potato soil was significantly lower than those in the garlic and soybean soils (p < 0.05). The communities of actinomycetes and arbuscular mycorrhizal fungi in the red pepper soil were significantly higher than those in the potato soil (p < 0.05). In addition, the cy17:0 to 16:$1{\omega}7c$ ratio was significantly lower in red pepper, soybean, and garlic soils compared with potato soil, indicating that microbial stress decreased. Consequently, differences in soil microbial community were highly associated with cultivated crop species, and this might be resulted from the difference in soil chemical properties.

Preparation of Iron Nanoparticles Impregnated Hydrochar from Lignocellulosic Waste using One-pot Synthetic Method and Its Characteristics (One-pot 합성 방법을 이용한 나노 철입자가 담지된 폐목재 기반 하이드로차의 제조 및 특성 평가)

  • Choi, Yu-Lim;Kim, Dong-Su;Angaru, Ganesh Kumar Reddy;Ahn, Hye-Young;Park, Kwang-Jin;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.95-105
    • /
    • 2020
  • In this study, iron nanoparticles impregnated hydrochar (FeNPs@HC) was synthesized using lignocellulosic waste and simple one-pot synthetic method. During hydrothermal carbonization (HTC) process, the mixture of lignocellulosic waste and ferric nitrate (0.1~0.5 M) as a precursor of iron nanoparticles was added and heated to 220℃ for 3 h in a teflon sealed autoclave, followed by calcination at 600℃ in N2 atmosphere for 1 h. For the characterization of the as-prepared materials, X-ray diffraction (XRD), cation exchange capacity (CEC), fourier transform infrared spectrometer (FT-IR), Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), Energy Dispersive X-ray Spectroscopy (EDS) were used. The change of Fe(III) concentration in the feedstock influenced characteristics of produced FeNPs@HC and removal efficiency towards As(V) and Pb(II). According to the Langmuir isotherm test, maximum As(V) and Pb(II) adsorption capacity of Fe0.25NPs@HC were found to be 11.81 and 116.28 mg/g respectively. The results of this study suggest that FeNPs@HC can be potentially used as an adsorbent or soil amendment for remediation of groundwater or soil contaminated with arsenic and cation heavy metals.

Application of Practical Immobilizing Agents for Declining Heavy Metal (loid)s Accumulation by Agricultural Crop (Allium wakegi Araki)

  • Seo, Byoung-Hwan;Kim, Hyun-Uk;Lwin, Chaw Su;Kim, Hyuck Soo;Kim, Kwon-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.4
    • /
    • pp.226-234
    • /
    • 2017
  • In order to reduce the accumulation of toxic metals (As, Cd and Pb) in the chives, various immobilizing agents such as a soil pH change-inducing immobilizing agent (lime), sorption agent (compost, spent mushroom compost), soil pH change and sorption agent (biochar) and, dissolved organic carbon (DOC) coagulator (gypsum) and uncontaminated soil were applied to the contaminated soils in isolation and in combination. Then chives were grown and determined for As, Cd and Pb concentrations accumulated in the edible part at harvest. The Cd and Pb concentrations of the chive plant grown in the contaminated soil (no treatment) exceeded the legislated Korean guideline values (Cd: $0.05mg\;kg^{-1}$, Pb $0.1mg\;kg^{-1}$) and As concentration ($21mg\;kg^{-1}$) was 1,000 times higher than chives plant grown in uncontaminated environment in Korea. Application of lime and gypsum significantly reduced As, Cd and Pb concentrations in all chives examined, due to the increased soil pH and decreased soil DOC. Also, application of combination treatments involving DOC coagulator such as gypsum together with lime decreased As, Cd and Pb concentrations from 21, 1.3 and $9.7mg\;kg^{-1}$ to 2.1, 0.1 and $1.1mg\;kg^{-1}$, respectively. Consequently, it was concluded that pH change-inducing immobilizing agent (lime) which was already well known and DOC coagulator such as gypsum could be used as a promising immobilizing agent for safer chives plant production.

Plant responses to nano and micro structured carbon allotropes: Water imbibition by maize seeds upon exposure to multiwalled carbon nanotubes and activated carbon

  • Dasgupta-Schubert, N.;Tiwari, D.K.;Francis, E. Reyes;Martinez Torres, P.;Villasenor Cendejas, L.M.;Lara Romero, J.;Villasenor Mora, C.
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.245-251
    • /
    • 2017
  • Multiwalled carbon-nanotubes (MWCNT) and micro-structured carbon, such as biochar or activated carbon (AC), have been seen to significantly increase the growth indices of certain plant species such as maize (Zea mays L.). Seed imbibition is the stage where environmental factors that affect water transport across the seed coat barrier, make a large impact. This work explores the effect on water imbibition by maize seeds when the aqueous environment surrounding the seed is diluted by small concentrations (10 and 20 mg/l) of pristine MWCNT (p-MWCNT), carboxylate functionalized MWCNT (COO-MWCNT) and AC. The degree of sensitivity of the process to (i) large structural changes is seen by utilizing the nano (the MWCNT) and the micro (the AC) allotropic forms of carbon; (ii) to small changes in the purity and morphology of the p-MWCNT by utilizing 95% pure and 99% pure p-MWCNTs of slightly differing morphologies; and (iii) to MWCNT functionalization by using highly pure (97%) COO-MWCNT. Water imbibition was monitored over a 15 hour period by Near Infrared Thermography (NIRT) and also by seed weighing. Seed surface topography was seen by SEM imaging. Analysis of the NIRT images suggests rapid seed surface topological changes with the quantity of water imbibed. While further work is necessary to arrive at a conclusive answer, this work shows that the imbibition phase of the maize seed is sensitive to the presence of MWCNT even to small differences in the purity of the p-MWCNT and to small differences in the physicochemical properties of the medium caused by the hydrophilic COO-MWCNT.

Long-term Assessment of Chemical Properties from Paddy Soils in Gyeongnam Province

  • Son, Daniel;Sonn, Yeon-Kyu;Kang, Seong-Soo;Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Ok, Yong Sik;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.132-137
    • /
    • 2016
  • Field monitoring was performed to evaluate the chemical properties of 260 paddy soils every 4 years from 1999 to 2015 in Gyeongnam province. Soil chemical properties, including soil pH, electrical conductivity, amount of organic matter (OM), available phosphate ($P_2O_5$), exchangeable potassium (K), calcium (Ca), magnesium (Mg) and sodium (Na), and available silicate ($SiO_2$) were analyzed. In 2015, the average values of pH, OM, available $P_2O_5$, exchangeable K, Ca, and Mg, and available $SiO_2$ was 5.8, $30g\;kg^{-1}$, $222mg\;kg^{-1}$, $0.37cmol_c\;kg^{-1}$, $6.5cmol_c\;kg^{-1}$, and $1.4cmol_c\;kg^{-1}$, $252mg\;kg^{-1}$, respectively. The frequency distribution within optimum range of paddy soils was 49.2%, 20.8%, 18.5%, and 5.8% for soil pH, OM, available $P_2O_5$, and available $SiO_2$, respectively. The available $P_2O_5$ concentrations in 2015 was excess level with portion of 58% and did not alter significantly during the experimental period. Although the average of available $SiO_2$ concentration has tended to increase with every year, the insufficient proportion of available $SiO_2$ concentration in 2015 was 48%. These results indicated that a balanced management of soil chemical properties can properly control the amount of fertilizer applied for sustainable agriculture in paddy field.

The Relationship between Microbial Characteristics and Glomalin Concentrations in Paddy Soils of Gyeongnam Province (경남지역 논토양 미생물 특성과 글로말린 함량 상관관계)

  • Lee, Young-Han;Kim, Min-Keun;Ok, Yong Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.792-797
    • /
    • 2012
  • Glomalin-related soil protein has been suggested as an enhancer for soil stability by promoting the aggregation. In this study, we examined the concentrations of glomalin and characteristics of microbial community in 20 paddy soils sampled from Gyeongnam Province. Total soil glomalin as glomalin-related soil protein (GRSP) had a significant positive correlation with soil organic matter (p<0.01) and soil dehydrogenase activity (p<0.01). The concentration of GRSP significantly correlated to soil microbial biomass carbon (p<0.001) and the total bacterial community (p<0.01) in paddy soils. In addition, the GRSP had a significant positive correlation with gram-negative bacteria community (p<0.05) and ratio of cy19:0 to 18:$1{\omega}7c$ (p<0.05) in paddy soils. In conclusion, the concentration of GRSP could be an indicator of soil health that simplify the inspection steps for sustainable agriculture in paddy soils.

Impacts of Soil Organic Matter on Microbial Community of Paddy Soils in Gyeongnam Province

  • Son, Daniel;Sonn, Yeon-Kyu;Weon, Hang-Yeon;Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Ok, Yong Sik;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.783-788
    • /
    • 2016
  • Agricultural management of paddy soil depends on the effects of soil microbial activities. The present study evaluated the soil microbial community of 25 paddy soils in Gyeongnam Province by fatty acid methyl ester (FAME). The average of microbial communities in paddy soils were 32.2% of total bacteria, 16.7% of Gram-negative bacteria, 12.9% of Gram-positive bacteria, 2.0% of actinomycetes, 14.9% of fungi, and 1.3% of arbuscular mycorrhizal fungi. The communities of total bacteria (34.9%) and Gram-negative bacteria (19.4%) in soils with $30{\sim}35g\;kg^{-1}$ of organic matter were significantly larger than those in soils with other organic matter levels. However, soils with $20{\sim}30g\;kg^{-1}$ of organic matter had significantly low ratio of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ as compared with soils with $30{\sim}35g\;kg^{-1}$ of organic matter, indicating microbial stress decreased (p < 0.05). In principal component analyses of soil microbial communities, Gram-negative bacteria should be considered as a potential responsible factor for the obvious microbial community differentiation that was observed between the two different organic matter levels in paddy fields. Thus, soils containing $20{\sim}30g\;kg^{-1}$ of organic matter were responsible for strong effect on microbial biomass and stress in paddy fields.

Impacts of Soil Texture on Microbial Community of Orchard Soils in Gyeongnam Province

  • Kim, Min Keun;Sonn, Yeon-Kyu;Weon, Hang-Yeon;Heo, Jae-Young;Jeong, Jeong-Seok;Choi, Yong-Jo;Lee, Sang-Dae;Shin, Hyun-Yul;Ok, Yong Sik;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • Soil management for orchard depends on the effects of soil microbial activities. The present study evaluated the soil microbial community of 25 orchard (5 sites for sandy loam, 7 sites for silt loam, and 13 sites for loam) in Gyeongnam Province by fatty acid methyl ester (FAME) method. The average values for 25 orchard soil samples were $270nmol\;g^{-1}$ of total FAMEs, $72nmol\;g^{-1}$ of total bacteria, $34nmol\;g^{-1}$ of Gram-negative bacteria, $34nmol\;g^{-1}$ of Gram-positive bacteria, $6nmol\;g^{-1}$ of actinomycetes, $49nmol\;g^{-1}$ of fungi, and $7nmol\;g^{-1}$ of arbuscular mycorrhizal fungi. In addition, silt loam soils had significantly low ratio of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ compared with those of loam soils (p < 0.05), indicating that microbial activity increased. The average soil microbial communities in the orchard soils were 26.7% of bacteria, 17.9% of fungi, 12.6% of Gram-negative bacteria, 12.5% of Gram-positive bacteria, 2.5% of arbuscular mycorrhizal fungi, and 2.2% of actinomycetes. The soil microbial community of Gram-negative bacteria in silt loam soils was significantly higher than those of sandy loam and loam soils (p < 0.05).