• 제목/요약/키워드: biochar

검색결과 179건 처리시간 0.027초

Responses of Low-Quality Soil Microbial Community Structure and Activities to Application of a Mixed Material of Humic Acid, Biochar, and Super Absorbent Polymer

  • Li, Fangze;Men, Shuhui;Zhang, Shiwei;Huang, Juan;Puyang, Xuehua;Wu, Zhenqing;Huang, Zhanbin
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1310-1320
    • /
    • 2020
  • Low-quality soil for land reuse is a crucial problem in vegetation quality and especially to waste disposal sites in mining areas. It is necessary to find suitable materials to improve the soil quality and especially to increase soil microbial diversity and activity. In this study, pot experiments were conducted to investigate the effect of a mixed material of humic acid, super absorbent polymer and biochar on low-quality soil indexes and the microbial community response. The indexes included soil physicochemical properties and the corresponding plant growth. The results showed that the mixed material could improve chemical properties and physical structure of soil by increasing the bulk density, porosity, macro aggregate, and promote the mineralization of nutrient elements in soil. The best performance was achieved by adding 3 g·kg-1 super absorbent polymer, 3 g·kg-1 humic acid, and 10 g·kg-1 biochar to soil with plant total nitrogen, dry weight and height increased by 85.18%, 266.41% and 74.06%, respectively. Physicochemical properties caused changes in soil microbial diversity. Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria were significantly positively correlated with most of the physical, chemical and plant indicators. Actinobacteria and Armatimonadetes were significantly negatively correlated with most measurement factors. Therefore, this study can contribute to improving the understanding of low-quality soil and how it affects soil microbial functions and sustainability.

커피찌꺼기의 효율적인 열화학 전환을 위한 전이 금속 기반 첨가제 효율 평가 (Efficiency Evaluation of Transition Metal-Based Additives for Efficient Thermochemical Conversion of Coffee Waste)

  • 조동완;장정윤;김선준;임길재
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권1호
    • /
    • pp.17-24
    • /
    • 2022
  • This work examined the effect of mixing transition metal-based additives [FeCl3, Fe-containing paper mill sludge (PMS), CoCl2·H2O, ZrO2, and α-Fe2O3] on the thermochemical conversion of coffee waste (CW) in carbon dioxide-assisted pyrolysis process. Compared to the generation amounts of syngas (0.7 mole% H2 & 3.0 mole% CO) at 700℃ from single pyrolysis of CW, co-pyrolysis in the presence of Fe- or Zr-based additives resulted in the enhanced production of syngas, with the measured concentrations of H2 and CO ranging 1.1-3.4 mole% and 4.6-13.2 mole% at the same temperature, respectively. In addition, α-Fe2O3 biochar possessed the adsorption capacity of As(V) (19.3 mg g-1) comparable to that of ZrO2-biochar (21.2 mg g-1). In conclusion, solid-type Fe-based additive can be highly considered as an efficient catalyst to simultaneously produce syngas (H2 & CO) as fuel energy resource and metal-biochar as sorbent.

Combined Application Effects of Arbuscular Mycorrhizal Fungi and Biochar on the Rhizosphere Fungal Community of Allium fistulosum L.

  • Chunxiang Ji;Yingyue Li;Qingchen Xiao;Zishan Li;Boyan Wang;Xiaowan Geng;Keqing Lin;Qing Zhang;Yuan Jin;Yuqian Zhai;Xiaoyu Li;Jin Chen
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권8호
    • /
    • pp.1013-1022
    • /
    • 2023
  • Arbuscular mycorrhizal fungi (AMF) are widespread soil endophytic fungi, forming mutualistic relationships with the vast majority of land plants. Biochar (BC) has been reported to improve soil fertility and promote plant growth. However, limited studies are available concerning the combined effects of AMF and BC on soil community structure and plant growth. In this work, a pot experiment was designed to investigate the effects of AMF and BC on the rhizosphere microbial community of Allium fistulosum L. Using Illumina high-throughput sequencing, we showed that inoculation of AMF and BC had a significant impact on soil microbial community composition, diversity, and versatility. Increases were observed in both plant growth (the plant height by 8.6%, shoot fresh weight by 12.1%) and root morphological traits (average diameter by 20.5%). The phylogenetic tree also showed differences in the fungal community composition in A. fistulosum. In addition, Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that 16 biomarkers were detected in the control (CK) and AMF treatment, while only 3 were detected in the AMF + BC treatment. Molecular ecological network analysis showed that the AMF + BC treatment group had a more complex network of fungal communities, as evidenced by higher average connectivity. The functional composition spectrum showed significant differences in the functional distribution of soil microbial communities among different fungal genera. The structural equation model (SEM) confirmed that AMF could improve the microbial multifunctionality by regulating the rhizosphere fungal diversity and soil properties. Our findings provide new information on the effects of AMF and biochar on plants and soil microbial communities.

첨가제가 유기성 폐기물 퇴비화 과정 중 온실가스 발생에 미치는 영향: 리뷰 및 데이터 분석 (Effects of Additives on Greenhouse Gas Emission during Organic Waste Composting: A Review and Data Analysis)

  • 정석순;박병준;윤정환;이상필;양재의;김혁수
    • 한국환경농학회지
    • /
    • 제42권4호
    • /
    • pp.358-370
    • /
    • 2023
  • Composting has been proposed for the management of organic waste, and the resulting products can be used as soil amendments and fertilizer. However, the emissions of greenhouse gases (GHGs) such as CO2, CH4, and N2O produced in composting are of considerable concern. Hence, various additives have been developed and adopted to control the emissions of GHGs. This review presents the different additives used during composting and summarizes the effects of additives on GHGs during composting. Thirty-four studies were reviewed, and their results showed that the additives can reduce cumulative CO2, CH4, and N2O emission by 10.5%, 39.0%, and 28.6%, respectively, during composting. Especially, physical additives (e.g., biochar and zeolite) have a greater effect on mitigating N2O emissions during composting than do chemical additives (e.g., phosphogypsum and dicyandiamide). In addition, superphosphate had a high CO2 reduction effect, whereas biochar and dicyandiamide had a high N2O reduction effect. This implies that the addition of superphosphate, biochar, and dicyandiamide during composting can contribute to mitigating GHG emissions. Further research is needed to find novel additives that can effectively reduce GHG emissions during composting.

가시박 유래 바이오차의 특성 및 항생물질 흡착제로서의 활용가능성 평가 (Characterization of Burcucumber Biochar and its Potential as an Adsorbent for Veterinary Antibiotics in Water)

  • 임정은;김해원;정세희;이상수;양재의;김계훈;옥용식
    • Journal of Applied Biological Chemistry
    • /
    • 제57권1호
    • /
    • pp.65-72
    • /
    • 2014
  • 바이오차는 바이오매스의 열분해를 통해 생산되는 물질로써 최근 토양 내 탄소격리, 토양질 개선, 환경 중 오염물질의 정화 등에 우수한 효과가 있는 것으로 보고되고 있다. 본 연구에서는 외래 유해 식물인 가시박을 $300^{\circ}C$$700^{\circ}C$에서 열분해하여 바이오차를 생산하였으며, 생산된 바이오차에 대한 물리 화학적 특성평가 및 수용액 중 항생물질의 흡착제거연구를 실시하였다. 연구결과 열분해 온도가 증가함에 따라 생산된 가시박 바이오차의 pH, EC, 회분, 고정탄소함량은 증가하였으며, 수득률, 휘발분함량, 작용기는 감소하였다. 특히, H/C atomic ratio의 경우 바이오차의 방향성, O/C atomic ratio의 경우 극성과 관련된 인자로서 고온 열분해 시 바이오차의 방향성 구조의 형성이 촉진되었고, 반대로 극성작용기들이 제거되면서 극성은 감소하는 것으로 나타났다. 또한 고온에 의한 가시박 바이오매스의 인장 강도 감소로 인해 생산된 바이오차의 입자크기는 감소하였다. 수용액 중 항생물질 제거효율은 바이오차 생산 온도가 상승함에 따라 증가하였는데, BM, BC300 및 BC700의 항생물질 초기농도 대비 TC의 제거효율은 각각 38, 95, 99%, SMZ의 제거효율은 각각 6, 7, 35%인 것으로 나타나 TC에 대한 제거효율이 상대적으로 높았다. 가시박 바이오차에 의한 수용액 중 항생물질의 제거는 바이오차와 항생물질이 함유한 방향성 구조 간에 발생하는 ${\pi}-{\pi}$ EDA 작용에 의한 흡착제거기작에 기인한 것으로 판단되었다. 본 연구결과 바이오차는 여러 유기오염물질의 제거에 광범위하게 적용할 수 있을 것으로 판단된다. 이외에도 여러 가지 바이오매스, 다양한 열분해 온도조건 및 화학적 활성화를 통해 생산되는 바이오차의 특성평가와 실제 적용에 관한 연구가 필요하며, 오염물질의 제거와 동시에 토양 적용을 통한 탄소격리, 토양질 개선 등에 관한 연구도 이루어져야 할 것으로 판단된다.

생물소재인 땅콩껍질 바이오 차를 이용한 수용액의 Cd(II) 제거 (Adsorption of Cd(II) in Aqueous Solution by Peanut Husk Biochar)

  • 최희정
    • 한국환경과학회지
    • /
    • 제27권9호
    • /
    • pp.753-762
    • /
    • 2018
  • The present study set out to investigate the adsorption of Cd(II) ions in an aqueous solution by using Peanut Husk Biochar (PHB). An FT-IR analysis revealed that the PHB contained carboxylic and carbonyl groups, O-H carboxylic acids, and bonded-OH groups, such that it could easily adsorb heavy metals. The adsorption of Cd(II) using PHB proved to be a better fit to the Langmuir isotherm than to the Freundlich isotherm. The maximum Langmuir adsorption capacity was 33.89 mg/g for Cd(II). The negative value of ${\Delta}G^o$ confirm that the process whereby Cd(II) is adsorbed onto PHB is feasible and spontaneous in nature. In addition, the value of ${\Delta}G^o$ increase with the temperature, suggesting that a lower temperature is more favorable to the adsorption process. The negative value of ${\Delta}H^o$ indicates that the adsorption phenomenon is exothermic while the negative value of ${\Delta}S^o$ suggests that the process is enthalpy-driven. As an alternative to commercial activated carbon, PHB could be used as a low-cost and environmentally friendly adsorbent for removing Cd(II) from aqueous solutions.

열수가압탄화법(HTC, Hydrothermal Carbonization)에 의한 음식물 폐기물 biochar의 특성 연구 (A Study on the Characteristics of the Biochar by Hydrothermal Carbonization with Food Waste)

  • 조우리;오민아;정원덕;박성규;배선영;이재영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권1호
    • /
    • pp.22-27
    • /
    • 2016
  • Hydrothermal carbonization (HTC) is a carbonization method of thermochemical process at a relatively low temperature (180-250℃). It is reacted by water containing raw material. In this study, it was selected for effective disposal method of food waste because food waste in Korea has large amount water. 5 kg, 10 kg, 15 kg of food waste were reacted for 6 hours at 200℃ for selecting the optimum amount of raw material. Since the derived optimum amount, food waste was reacted for 2 hours, 4 hours and 6 hours at 200℃ and 1.5 MPa. After carbonization, it was analyzed to evaluated the properties by ultimate analysis, iodine adsorption, BET surface area and SEM. After analyzing the characteristics, it can be utilized as a basic data for applied.

열 에너지 저장용 카프르산을 이용한 아몬드 껍질 바이오차 기반의 안정화 형태 상변이 물질의 성능 (Synthesis of Almond Shell Biochar-Based Shape-Stable Composite Phase Change Material Using Capric Acid for Thermal Energy Storage)

  • 잔낫;소우멘 만달;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.51-52
    • /
    • 2023
  • A new shape-stable composite phase change material (PCM) have been produced via an easy and simple vacuum impregnation method. The composite PCM have been derived from almond shell biochar (ASB) as supporting material and capric acid (CA) as phase change material. Cost effective waste almond shells (AS) are renewable, eco-friendly, and rich in pores which enhance the possibility of CA impregnation. Therefore, in this study, three different ratios of CA (1:1, 1:2 and 1:3) have been incorporated in ASB to produce shape-stabilized phase change composites (ASCAs). Different techniques such as scanning electron microscopy (SEM), Fourier transform-infrared spectroscope (FT-IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) have been applied to evaluate the characteristics of ASCAs. The attained composite PCMs have exhibited shape stability with high latent heat storage, that makes it suitable for thermal energy storage applications.

  • PDF

리그닌과 적니의 공동 열분해를 통한 금속-바이오차 생산 및 수중 오염물질 제거를 위한 활용 (The Production of Metal-biochar through Co-pyrolysis of Lignin and Red Mud and Utilization for the Removal of Contaminants in the Water)

  • 김은지;김나은;박주영;이희연;윤광석
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제29권2호
    • /
    • pp.1-10
    • /
    • 2024
  • With industrial development, the inevitable increase in both organic and inorganic waste necessitates the exploration of waste treatment and utilization methods. This study focuses on co-pyrolyzing lignin and red mud to generate metalbiochar, aiming to demonstrate their potential as effective adsorbents for water pollutant removal. Thermogravimetric analysis revealed mass loss of lignin below 660℃, with additional mass loss occurring (>660℃) due to the phase change of metals (i.e., Fe) in red mud. Characterization of the metal-biochar indicated porous structure embedded with zero-valent iron/magnetite and specific functional groups. The adsorption experiments with 2,4-dichlorophenol and Cd(II) revealed the removal efficiency of the two pollutants reached its maximum at the initial pH of 2.8. These findings suggest that copyrolysis of lignin and red mud can transform waste into valuable materials, serving as effective adsorbents for diverse water pollutants.

가축매몰지 및 인근 농경지의 축산용 잔류 항생제 모니터링 (Monitoring of Selected Veterinary Antibiotics in Animal Carcass Disposal Site and Adjacent Agricultural Soil)

  • 임정은;아누쉬카 라자팍샤;정세희;김성철;김계훈;이상수;옥용식
    • Journal of Applied Biological Chemistry
    • /
    • 제57권3호
    • /
    • pp.189-196
    • /
    • 2014
  • 2010년 발생한 가축전염병인 구제역(FMD)으로 인해 전국에 약 4,700여개소에 가축 매몰지가 조성되었다. 매몰된 가축의 부패 과정에서 발생하는 침출수는 항생제와 같은 다양한 오염물질들을 함유하고 있어 주변 토양 및 수계로 유입되는 경우 환경에 악영향을 초래할 수 있다. 이와 같이 환경에 잔류하는 항생제는 내성박테리아 생성 등을 통해 인간건강 및 생태계 건전성을 위협할 수 있다. 이에 본 연구에서는 가축 매몰에 의한 항생제 오염수준을 평가하기 위해 가축 매몰지 및 인근 농경지 토양에서 항생제 모니터링을 실시하였다. 모니터링 대상 항생제로는 축산용 항생제로 사용량이 가장 많은 tetracycline 계열의 tetracycline (TC), chlortetracycline (CTC), oxytetracycline (OTC)와 sulfonamide 계열의 sulfamethazine (SMZ), sulfamethoxazole (SMX)을 선정하였다. 항생제의 잔류농도는 매몰지 (TC: $144.26-350.73{\mu}g/kg$, SMZ: $17.72-44.94{\mu}g/kg$)가 인근 농경지 (TC: $134.16-320.73{\mu}g/kg$, SMZ: $6.48-8.85{\mu}g/kg$)에 비해 높은 것으로 나타났으며 CTC, OTC, SMX는 검출되지 않았다. 연구결과를 통해 단정할 수는 없으나 매몰된 가축사체에 함유된 항생제가 매몰지 및 인근 토양에 축적될 수 있는 개연성이 있는 것으로 판단되었다. 특히, 농경지에 잔류하는 항생제는 농작물에 의해 흡수되어 인간 건강에 악영향을 미치므로 이에 대한 지속적인 모니터링이 요구된다.