• 제목/요약/키워드: bioavailability of Ca

검색결과 79건 처리시간 0.027초

고 칼슘 섭취가 철이 부족한 성장기 흰쥐의 철 이용성과 뼈 성장에 미치는 영향 (The Effect of Excess Calcium on the Iron Bioavailability and Bone Growth of Marginally Iron Deficient Rats)

  • 장순옥;김기대;이성현
    • Journal of Nutrition and Health
    • /
    • 제37권8호
    • /
    • pp.645-654
    • /
    • 2004
  • This study examined the effect of excess calcium (Ca) on the iron (Fe) bioavailability and bone growth of marginally Fe deficient animals. Two groups of weanling female SD rats were fed either normal Fe (35 ppm) or Fe deficient diet (8 ppm) for 3 weeks. Then each group of animals were assigned randomly to one of three groups and were fed one of six experimental diets additionally for 4 weeks, containing normal (35 ppm) or low (15 ppm) Fe and one of three levels of Ca as normal (0.5%), high (1.0%), or excess (1.5%). Feces and urine were collected during the last 3 days of treatment. After sacrifice blood, organs, and femur bone were collected for analysis. Final body weight and average food intake were not affected by either the levels of dietary Ca or Fe. Low Fe diet significantly reduced the level of serum ferritin, however, for Hb, Hct, and TIBC no difference was shown than those in the normal Fe group. TIBC increased slightly by high and excess Ca intake in low Fe groups. For both normal and low Fe groups, high and excess Ca intakes reduced the apparent absorption of Fe and Fe contents of liver significantly (p < 0.05). Calcium contents in kidney and Femur of rats that were fed high and excess levels of Ca were significantly greater than those of normal Ca groups. However, weight, length, and breaking force of the bone were not affected by increased Ca intakes. Both in control and low Fe groups, high and excess intakes of Ca decreased the apparent absorption of Ca. These results indicate that the excess intakes of calcium than the normal needs would be undesirable for Fe bioavailability and that the adverse effects be more serious in marginally iron deficient growing animals. In addition bone growth and strength would not be favorably affected by high Ca intakes, though, the long term effect of increased Ca contents in bone requires further examination.

칼슘급원으로서의 불가사리 칼슘의 체내이용성 (Bioavailability of Starfish Calcium as a Novel Calcium Source)

  • 이연숙;문지영;장수정
    • 한국지역사회생활과학회지
    • /
    • 제16권1호
    • /
    • pp.135-148
    • /
    • 2005
  • This study was conducted to investigate the bioavailability of calcium derived from starfish as a new calcium source. Four-week old Sprague-Dawley female rats were divided 6 groups. The rats were received experimental diets containing two kinds of Ca sources, CaCO₃ or starfish, and three levels of Ca, low (0.1 %), medium (0.5%) and high (1.0%), respectively, for 6 weeks. The parameters which related to Ca bioavailability were measured : Serum Ca concentration, Alkaline phosphatase(ALP) and GOT activities ; tissue Ca contents, bone dimension and Ca, P, Mg contents; Ca retention and apparent absorption. Starfish Ca-fed rats did not show any difference from CaCO₃-fed rats in terms of growth, food intake and FER. Serum Ca, ALP and GOT activities as well as tissue Ca contents were not different between CaCO₃- and starfish Ca-fed groups. Although dimension of femur and lumbar was not different between CaCO₃- and starfish Ca-fed rats, ash content was high in starfish Ca-fed rats. Ca and P contents of femur and lumbar were not different between both groups. Starfish Ca-fed groups showed higher Mg contents than CaCO₃-fed groups in both femur and lumbar. Ca absorption rate and retention rate were significantly higher in starfish Ca-fed rats. These results indicate that Ca derived starfish did not show any negative effect on growth and Ca metabolism of rats compared to calcium carbonate. Starfish Ca can be recommended as a good Ca source on the basis of higher Ca absorption and bioavailability.

  • PDF

칼슘과 철의 과다섭가 성장기 흰쥐의 체내 무기질 이용성에 미치는 영향 (Effect of Calcium and Iron Loading on Bioavailability of Minerals in Normal and Ca/Fe-deficient Rats)

  • 이연숙
    • Journal of Nutrition and Health
    • /
    • 제32권3호
    • /
    • pp.248-258
    • /
    • 1999
  • This study examined the effect of excess loading of calcium (Ca)and iron(Fe) on the bioavailability of minerals in both normal and Ca-and Fe-deficient rats. Three-week-old male rats were divided into four groups and fed experimental diets for six weeks, containing either normal (0.5%) or high(1.5%) Ca and normal (35ppm) or high (350ppm)Fe. Likewise, three-week-old male rats were first fed a Ca-and Fe-deficient diet for three weeks, and then fed one of four experimental diets for additional three weeks. In both normal and Ca-and Fe-deficient rats, ca contents of serum, liver, kidney and femur were not significantly affected by dietary Ca and Fe levels. Apparent Ca absorption(%) decreased in rats fed a high Ca diet regardless of dietary Fe levels. Magnesium(Mg) contents of serum, liver and femur significantly decreased in rats fed a high Ca diet. Fe contents of serum and liver significantly increased in rats fed a high-Fe diet, but decreased in rats fed a high Ca diet. Fe content of serum and liver significantly increased in rate fed a high-Fe diet, decreased in rats fed a high-Ca diet. Apparent Fe absorption increased in rats fed a high-Fe diet, and decreased in rats fed a high-Ca diet in Ca-and Fe-deficient rats, but dietary Ca did not seem to affect Fe absorption in normal rats. Phosphorus(P) contents of serum and femur were not significantly affected by dietary Ca and Fe levels in both normal and Ca-and Fe-deficient rats. Serum copper(Cu) decreased in rats fed a high-Fe diet, while serum zinc(Zn) decreased in rats fed a high-Ca diet in normal rats. Cu contents of liver, and Zn contents of serum and liver decreased in rats fed a high-Fe diet in Ca-and Fe-deficient rats. There results suggest that a dietary overload of Ca and Fe in both normal and Ca-and Fe-deficient rats may decrease mineral bioavailability leading to potential health problems.

  • PDF

아스파르트산 킬레이트 칼슘의 칼슘 결핍쥐에서의 생물학적 유용성 (Bioavailability of Aspartic Acid Chelated Calcium in Calcium Deficient Rats)

  • 박명규;하태열;신광순
    • Journal of Nutrition and Health
    • /
    • 제44권6호
    • /
    • pp.474-480
    • /
    • 2011
  • Calcium (Ca) is an essential element to maintain body homeostasis. However, many factors disturb calcium absorption. Aspartic acid chelated calcium (AAC) was synthesized by new methods using calcium carbonate and aspartic acid. This study was carried out to investigate the bioavailability of AAC in Ca-deficient rats. The experimental groups were as follows: NC; normal diet control group, CD-C; untreated control group of Ca-deficient (CD) rats, CD-$CaCO_3$; $CaCO_3$ treated group of CD rats, CD-AAC; AAC treated group of CD rats, and CD-SWC; and seaweed-derived Ca treated group of CD rats. The Ca content of various types of Ca was held constant at 32 mg/day, and the four CD groups were fed for 7 days after randomized grouping. Ca content in serum, urine, and feces within feeding periods were analyzed to confirm Ca absorption. Serum Ca content was significantly higher in the CD-AAC (11.24 mg/dL) and CD-SWC (10.12 mg/dL) groups than that in the CD-C (8.6 mg/dL) group 2 hours following the first administration. The Ca content in feces was significantly lower in the CD-AAC (35.4 mg/3 days) and CD-SWC (71.1 mg/3 day) groups than that in the CD-$CaCO_3$ (98.7 mg/3 days) group (p > 0.05). AAC had a 2.3-fold higher absorption rate of Ca than that of SWC. No differences in fibula length were observed in the NC and CD groups. The fibula weights of the CD-AAC (0.33 g) and CD-SWC (0.33 g) groups increased compared to those in the CD-C (0.27 g) group; however, no significant difference was observed between the CD groups. We conclude that bioavailability of AAC is higher than that of seaweed-derived Ca or inorganic Ca. Thus, these findings suggest the AAC has potential as a functional food material related to Ca metabolism.

난각 칼슘의 생체 이용성에 관한 연구 (A Study on the Calcium Bioavailability of Eggshell Powder in the Growing Rats)

  • 장순옥
    • Journal of Nutrition and Health
    • /
    • 제36권7호
    • /
    • pp.684-690
    • /
    • 2003
  • This study has investigated the bioavailability of calcium in eggshell powder (ESP) for the purpose of reutilizing eggshells as the calcium source. The experiment was designed 2 ${\times}$ 2 factorial method with two sources, CaCO$_3$ and ESP, and two levels, 0.2% and 0.4% calcium. Weanling SD rats were assigned randomly to one of 4 groups and provided by one of the isocaloric, 20% casein based 4 different experimental diets for 4weeks. Deionized water was given and environment was kept from any contamination of minerals. The body weight, diet intake, feed efficiency ratio (FER), bone growth, Ca contents of bones, and apparent absorption were measured. FER (0.38 - 0.40) and kidney weight were not different among groups and the weight and length, Ca content, strength of two bones Tibia and Femur were not affected by Ca sources except Femur Ca content. Ca content of Femur was greater in ESP groups than that of CaCO$_3$ groups. The body weight gain, bone growth, the Ca contents and strength of bones were significantly greater in 0.4% calcium groups suggesting 0.2% calcium is not sufficient for the optimum growth in the growing rats. These results indicate that ESP be a proper Ca source comparable or superior to CaCO$_3$. However the apparent absorption rate of final 3 days of feeding did not support the observed results showing lower rate in ESP than CaCO$_3$ groups. Further study be needed in the absorption aspect.

칼슘과 철 보충제의 과다섭취가 빈혈모델 흰쥐의 체내 철 이용성 및 간과 신장기능에 미치는 영향 (Effect of Excess Calcium and Iron Supplement on Iron Bioavailability, Liver and Kidney Functions in Anemic Model Rats)

  • 이종현;이연숙
    • 대한지역사회영양학회지
    • /
    • 제5권2호
    • /
    • pp.243-252
    • /
    • 2000
  • This study examined the effects of excess intake of calcium(Ca) and iron(Fe) supplements on iron bioavailability, liver and kidney functions in anemic model rats. Seven-week-old female rats were first fed and Fe-deficient diet for ten weeks, and then fed one of nine experimental diets for an additional eight weeks, containing three levels of Ca, normal (0.5%) or high(1.5%) or excess (2.5%) and three levels of Fe, normal(35ppm) or high(210 ppm) or excess(350ppm). In anemic model rats, serum Fe, total iron binding capacity(TIBC), hemogolin(Hb), hematocrit(Hct) and liver Fe contents were significantly decreased. Apparent Fe absorption significantly increased with increasing dietary Fe levels, and decreased with increasing dietary Ca levels. serum Fe concentration significantly increased in rats fed a high- and excess-Fe diet, and decreased in rats fed a excess-Ca diet. TIBC was decreawed in rats fed a excess-Ca diet, and transferrin saturation(%) increased in rats fed ahigh- and excess-Fe diet. Hb and Hct were decreased in rats fed an excess-Ca diet regardless of dietary Fe levels. Fe and thiobarbituric acid reactin gsubstance(TBARS) Contents of liver significantly increased in rats fed a high- and excess0-Fe diet, and decreased in rats fed a high- and excess-Ca diet. Fe content of the spleen showed similar results. Urinary creatinine and GFR increased in rats fed an excess-Ca diet regardless of dietary Fe levels. GOT, GPT and LDH were not significantly affected by dietary Ca and Fe levels. These results suggest that excess intake of Fe may increase liver Fe deposits and TBARS, and excess intake of Ca may decrease Fe bioavailability and kidney function leading to potential health problems in anemic model rats.

  • PDF

글루템 가수분해물에 의한 칼슘의 가용화 및 체내이용성 증진 효과 (Enhanced Effect of Gluten Hydorlysate on Solubility and Bioavailability of Calcium in Rats)

  • 이연숙
    • Journal of Nutrition and Health
    • /
    • 제30권1호
    • /
    • pp.40-47
    • /
    • 1997
  • Dietary peptides have recently received attention regarding their beneficial effects on nutrient metabolism since the caseinphosphoptides obtained from casein hydrolysate are generally believed to enhance the intestinal absorption of Ca. The two experiments were conducted to investigate the effects of various hydrolyzed fractions of gluten on Ca bioavailability. The gluten hydrolysate of dietary components was produced by enzymatic hydrolysis of gluten whereas gluten hydrolysate supernationt and its precipiate resulted from centrifugation. In experiment I, the rats were for 4 weeks fed the 4 kinds of diets containing same amount of nitrogen and calories and diffeing only in the forms of nitrogen sources. The diets were gluten (G), gluten hydrolysat(GH), gluten hydrolysate supernatant(GHS) and gluten hydrolysate precipitatie(GHP). Determination was made for the body weight gain, serum Ca concentration, Ca solubility in small intestinal contents, bone weight, length and stength, bone ash and Ca content, and Ca balance, respectively. No significant difference was noticed as regards growth, serum Ca, and bone dimension and Ca content among rat groups. More significant increase was observed with regard to Ca absorption and intestinal solubility in the rats receiving the GH or GHS diet which containe crude gluten peptides, than in those subjected to G or GHP diet. In experiment II, in vitro determination for Ca solubility was made to ascertain the mechanism responsible for the effects of gluten peptides on Ca absorption. The 10mM Ca in potassium phosphate buffer solution(pH 7.0) incubated for 3 hours at 37$^{\circ}C$ by the GHS fraction, was observed to be capable of increasing the Ca solubility at 5-25mg/ml concentration of gluten peptides. These observations suggest that the gluten peptides from gluten hydrolysate may enhance the Ca absorption efficiency by increasing the solubility of Ca in small intestine.

  • PDF

골다공증 모델 흰쥐에서 고수준의 단백질의 칼슘 섭취가 칼슘대사 및 신장기능에 미치는 영향 (Effects of High Protein and Calcium Intakes on Calcium Metabolism and Renal Function in Ovariectomized Osteporosis Rat Model)

  • 오주환
    • Journal of Nutrition and Health
    • /
    • 제30권6호
    • /
    • pp.605-613
    • /
    • 1997
  • This study was to investigate interaction between dietary protein and Ca levels in Ca metabolism and renal function in osteporosis rats. Five week-old female rats were fed a low Ca diet for 4 weeks after ovariectomy operation to establish rat models of osteoporosis. The ovariectomized osteoporosis rats were divided into six groups and were fed experimental diets which contained two levels of protein, normal (20%) and high(40%) , and three levels of Ca, low (0.06%), normal (0.47%) and high(0.94%) for 4 weeks , respectively. The ovaricetmized rat model of osteoporosis showed a remarkable decrease in serum Ca concentration, fresh weight and breaking force of femur, Ca and P contents of femur, and apparent absorption and retention of Ca. The supplementations of Ca and P contents of femur, and apparent absorption and retention of Ca. The supplementations of Ca at the dietary levels of normal and high levels significantly enhanced Ca bioavailability shown in the above experimental rat models of osteoporosis, regardless of dietary protein levels ; whereas the rats which were fed the low Ca diet demonstrated rather a decrease in its bioavailability. Irrespectively of the dietary Ca levels, the rats which were fed high protein diet exhibited an increase in kidney weight, urinary Ca, volume and hydroxyproline, and glomerular filtration ratio(GFR). The results show that dietary protein and calcium levels affect the renal function and Ca metabolism independently, while the interaction between protein and calcium have not been shown.

  • PDF

Nano-Calcium Ameliorates Ovariectomy-Induced Bone Loss in Female Rats

  • Choi, Hyeon-Son;Han, JeungHi;Chung, Seungsik;Hong, Yang Hee;Suh, Hyung Joo
    • 한국축산식품학회지
    • /
    • 제33권4호
    • /
    • pp.515-521
    • /
    • 2013
  • In this study, we examined the effects of organic types of calcium derived from oyster shell (OS-Ca) and nano-calcium (Nano-Ca) on the bio-availability and physiological responses associated with bone health in ovariectomised rats. Increased body weight, which is one of the physiological effects of ovary removal, was significantly recovered by Nano-Ca treatment (p<0.05). The reduced calcium level in the liver in ovariectomised rat was increased significantly with OS-Ca and Nano-Ca treatment (p<0.05), suggesting improved calcium bio-availability. Alkaline phosphatase (ALP), osteocalcin, and deoxypyridinoline (DPD) were analysed as biochemical markers of bone metabolism and health in the presence or absence of OSCa and Nano-Ca. ALP, osteocalcin, and DPD levels increased following ovary removal and tended to decrease after treatment with Nano-Ca, indicating that Nano-Ca induces favourable bone metabolism. This result was reflected in the recovery of bone mineral density (BMD) and bone mineral content (BMC) of the femur after Nano-Ca treatment following ovary removal. Taken together, our data show that the tested calcium treatments, especially using Nano-Ca, enhanced the bioavailability or absorption of calcium and positively affected bone metabolism in ovariectomised rats.

뼈건강 지표를 이용한 유기태 칼슘 급원의 생체이용성 및 소화율 (Bioavailability and Digestibility of Organic Calcium Sources by Bone Health Index)

  • 한정호;김은미;정만기;지성규;지규만
    • Journal of Nutrition and Health
    • /
    • 제43권1호
    • /
    • pp.12-25
    • /
    • 2010
  • 본 연구는 $CaCO_3$를 표준으로 장내 칼슘 흡수를 촉진하는 peptide-Ca, anchovy-Ca, methionine hydroxyl analogue calcium의 생체이용성과 소화율을 평가하였다. 표 준군은 $CaCO_3$를 AIN-93G (1993)를 기준으로 칼슘 요구량의 0%, 30%, 60%로 첨가하여 모든 분석 항목에 대한 비교기준으로 삼았다. 실험군은 요구량의 40% 수준으로 각기 다른 칼슘 공급원으로 실험하였다. 실험결과는 대부분 칼슘 함량이 높은 Ca-60%군이 가장 높은 수치를 보여 주어 칼슘의 섭취량과 비례하여 양의 상관 관계를 보여 주었다. 생체이용성 평가에서는 MHA-Ca 군이 체중 증가량, BMD, BS, BBS 항목에서 높은 이용성을 보여 주었다. peptide-Ca은 회귀계수가 높은 회분함량 ($R^2\;=\;0.98$)과 BMC ($R^2\;=\;0.935$)를 이용한 평가 에서 표준군에 비해 11%, 7% 높은 이용성을 보여주었다. Anchovy-Ca군 역시 여러 생체이용성 평가항목에서 높은 이용성을 나타냈다. 이는 동일한 양의 칼슘을 섭취했을 때 실험군이 표준으로 사용된 $CaCO_3$ 보다 높은 칼슘 이용성을 가지고 있음을 의미한다. 하지만 본 연구로는 유기태 칼슘이 어떤생리 활성 작용을 통해 이러한 결과를 나타냈는지는 알 수 없었으며, 이 부분을 분명하게 규명하는 추가적인 연구가 필요한 것으로 판단된다. 소화율 측정항목에서는 Ca-0%군을 제외하고는 90% 이상 높은 칼슘 소화율을 나타냈다. 소화율과 보유율에서 peptide-Ca군이 유의한 차이는 없었지만 다른 실험군에 비해 미세하게 높았다. 이러한 차이의 축적으로 인해 생체이용성 평가시 실험군간 차이를 보여 주었다. 결국 공급한 칼슘에 대한 소화 및 흡수의 차이에 의해 뼈 건강관련 지표가 좋아지고 이로 인해 실험군의 생체 이용성이 높게 평가 되었다. Peptide-Ca와 순수한 식품 칼슘 급원인 멸치 뼈는 높은 칼슘 이용성을 나타내어, 체내칼슘 영양개선에 상당한 효과가 있슴이 증명되었다.