• Title/Summary/Keyword: bioaerosol chamber

Search Result 4, Processing Time 0.024 seconds

Characteristics of Bioaerosol Generation of Household Humidifiers by User Practices (가정용 가습기의 사용자 습관에 따른 실내공기 중 바이오에어로졸의 발생특성)

  • Kim, Ik-Hyeon;Kim, Ki Youn;Kim, Daekeun
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.6
    • /
    • pp.503-509
    • /
    • 2012
  • Objectives: This study was performed in order to evaluate the generation characteristics of airborne bacteria and fungi while operating a household humidifier, in consideration of user habits. Methods: Microbial samples were collected in a closed chamber with a total volume of 2.76 $m^3$, in which a humidifier was operated according to experimental strategies. A cultivation method based on the viable counts of mesophilic heterotrophic bacteria and fungi was performed. Experimental strategies were divided into three classes: the type of water in the water reservoir (tap water, cooled boiled water); the frequency of filling the reservoir (refill every day, no refill); and the sterilization method (sterilization function mode, humidifier disinfectants). Results: Significant increases in the concentration of airborne bacteria were observed while the humidifier was in operation. The concentration had increased to 2,407 $CFU/m^3$ by 120 hours when tap water filled the reservoir without any application of sterilization, while for cooled boiled water, it was merely 393 $CFU/m^3$ at a similar time point. Usages of disinfectant in the water tank were more effective in decreasing bioaerosol generation compared to sterilization function mode operation. Generation characteristics of airborne fungi were similar to those of bacteria, but the levels were not significant in all experiments. Calculated exposure factor can be used as an indicator to compare biorisk exposure. Conclusion: This study identified the potential for bioaerosol generation in indoor environments while operating a household humidifier. User practices were critical in the generation of bioaerosol, or more specifically, airborne bacteria. Proper usage of a humidifier ensures that any biorisks resulting from generated bioaerosol can be prevented.

Survival of Microorganisms on Antimicrobial Filters and the Removal Efficiency of Bioaerosols in an Environmental Chamber

  • Kim, Sung Yeon;Kim, Misoon;Lee, Sunghee;Lee, JungEun;Ko, GwangPyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1288-1295
    • /
    • 2012
  • Exposure to bioaerosols causes various adverse health effects including infectious and respiratory diseases, and hypersensitivity. Controlling exposure to bioaerosols is important for disease control and prevention. In this study, we evaluated the efficacies of various functional filters coated with antimicrobial chemicals in deactivating representative microorganisms on filters or as bioaerosols. Tested functional filters were coated with different chemicals that included (i) Ginkgo and sumac, (ii) Ag-apatite and guanidine phosphate, (iii) $SiO_2$, ZnO, and $Al_2O_3$, and (iv) zeolite. To evaluate the filters, we used a model ventilation system (1) to evaluate the removal efficiency of bacteria (Escherichia coli and Legionella pneumophila), bacterial spores (Bacillus subtilis spore), and viruses (MS2 bacteriophage) on various functional filters, and (2) to characterize the removal efficiency of these bioaerosols. All experiments were performed at a constant temperature of $25^{\circ}C$ and humidity of 50%. Most bacteria (excluding B. subtilis) rapidly decreased on the functional filter. Therefore, we confirmed that functional filters have antimicrobial effects. Additionally, we evaluated the removal efficiency of various bioaerosols by these filters. We used a six-jet collision nebulizer to generate microbial aerosols and introduced it into the environmental chamber. We then measured the removal efficiency of functional filters with and without a medium-efficiency filter. Most bioaerosol concentrations did not significantly decrease by the functional filter only but decreased by a combination of functional and medium-efficiency filter. In conclusion, functional filters could facilitate biological removal of various bioaerosols, but physical removal of these by functional was minimal. Proper use of chemical-coated filter materials could reduce exposure to these agents.

Efficiency of the Hybrid-type Air Purifier on Reducing Physical and Biological Aerosol (복합식 공기청정기의 물리적 및 생물학적 입자상 물질의 제거 효과)

  • Kim, Ki-Youn;Kim, Chi-Nyon;Kim, Yoon-Shin;Roh, Young-Man;Lee, Cheol-Min
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.478-484
    • /
    • 2006
  • There was no significant difference in the CADR (Clean Air Delivery Rate) between physical aerosols, NaCl and smoke, and biological aerosols, airborne MS2 virus and P. fluorescens, which implicate that the hybrid-type of air purifier, applying the unipolar ion emission and the radiant catalytic ionization, imposed identical reduction effect on both physical aerosol and bioaerosol. Ventilation decreases the efficiency of air cleaning by unipolar ionization because high ventilation diminishes the particle concentration reduction effect. The particle removal efficiency decreases with increase in the chamber volume because of the augmented ion diffusion and higher ion wall loss rate. Particle size affects the efficiency of air ionization. The efficiency is high for particles with very small diameter because reduction of charge increases with particle size. If there is no increasing supply of ions, the efficiency of air cleaning by unipolar ionization increases with respect to initial concentration of particles because of the large space charge effect at high particle concentration and amplified electric field.

Optimal Design of Sheath Flow Nozzle Acceleration Section for Improving the Focusing Efficiency (집속효율 향상을 위한 외장유동노즐 가속 구간의 최적설계 연구)

  • Lee, Jin-Woo;Jin, Joung-Min;Kim, Youn-Jea
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.763-772
    • /
    • 2019
  • There is a need to use sheath flow nozzle to detect bioaerosol such as virus and bacteria due to their characteristics. In order to enhance the detection performance depending on nozzle parameters, numerical analysis was carried out using a commercial code, ANSYS CFX. Eulerian-lagrangian approach method is used in this simulation. Multiphase flow characteristics between primary fluid and solid were considered. The detection performance was evaluated based on the results of flow field in nozzle chamber such as focusing efficiency and swirl strength. In addition, Latin hypercube sampling(LHS) of design of experiment(DOE) was used for generating a near-random sampling. Then, the acceleration section is optimized using response surface method(RSM). Results show that the optimized model achieved a 6.13 % in a focusing efficiency and 11.47 % increase in swirl strength over the reference model.