• Title/Summary/Keyword: bioactive metabolites

Search Result 178, Processing Time 0.023 seconds

Recently Isolated Bioactive Compounds from Korean Marine Sponges

  • Lim, Young-Ja;Kim, Jung-Sun;Chung J. Shim;Lee, Chong-O.;Im, Kwang-Sik;Jee H. Jung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.89-94
    • /
    • 1998
  • Marine sponges are recognized as a plentiful source of diverse biologically active secondary metabolites. Recently, we have initiated a research to discover antitumor constituents from the marine sponges collected from Korean Waters. Marine sponges collected from the South Sea of Korea were screened for several biological activities including such as brine shrimp lethality and cytotoxicity. Significant brine shrimp lethality was detected in the crude extract of a two-sponge association of Poecillastra sp. and Jaspis sp. A cross-section of this sample showed two layers of morphologically distinct sponges. The thin and dirty yellow outer layer was identified as Poecillastra sp. (Pachastrellidae), the surface of which was very rough. The light-grey inner layer was identified as Jaspis sp. (Jaspidae), the surface of which was smooth. This two-sponge association appears to be consistent as these sponges were always found in associated form regardless of collection site or collection period. Investigation of the bioactive constituents monitored by brine shrimp lethality assay led to the isolation of pectenotoxin II (PTX2) and psammaplin A as causative compounds for the brine shrimp lethality. $^1$H- and $\^$13/C-nmr signals of PTX2 was fully assigned utilizing TOCSY, HETCOR, Long-range HETCOR, and Homonuclear J-resolved 2D experiments. PTX2 displayed very potent and selective cytotoxicities in the 60 cell line panel antitumor assay at the NCI. PTX2 has progressed to acute toxicity determination and in vivo antitumor assay at the NCI (Table 1). However, significant in vitro antitumor activity of PTX2 can not be affirmed in the in vivo assay.

  • PDF

Inhibitory Effects of Seaweed Extracts on Growth of Malassezia furfur and Malassezia restricta

  • Choi, Jae-Suk;Lee, Bo-Bae;Joo, Chi-Un;Shin, Su-Hwa;Ha, Yu-Mi;Bae, Hee-Jung;Choi, In-Soon
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.29-34
    • /
    • 2009
  • Fifty seven species of common seaweed from the coast of Korea were screened for antifungal activity against Malassezia species. Seaweeds as a source of bioactive compounds are able to produce a great variety of secondary metabolites with different activities. There are numerous reports on the biological activities of seaweeds against human pathogens, fungi, and yeasts, but only few contain data regarding inhibitory effects against Malassezia sp., a major cause of dandruff and seborrheic dermatitis. To help address this paucity of information, this work was carried out to examine the antifungal effects of seaweed extracts against M. furfur and M. restricta. Of the fifty seven species of marine algae screened for their potential antifungal activity, only 17 species (29.8%) exhibited inhibitory activity. In agar disc diffusion method, the ether extracts of Corallina pilulifera, Enteromorpha linza, Laminaria japonica, Symphyocladia latiuscula and Ulva sp. showed strong antifungal activity. To identify major constituents in seaweed extracts, four selected extracts were analyzed on' a GC-MS equipped with a flame ionization detector, and compared to spectral data from databases WILEY229.LIB and NIST107.LIB. Most constituents in seaweed extracts are fatty acid-related compounds. When we evaluated any acute toxicity, the ether extracts of the selected four species were not toxic in mice. According to these results, it can be suggested that these seaweed extracts are valuable for the development of therapeutic agents in treating dandruff and seborrheic dermatitis. Further investigations to determine its bioactive compound(s) are currently in progress.

Simultaneous Analysis of Bioactive Metabolites from Caulis Lonicera japonica by HPLC-DAD-ion trap-MS (HPLC-DAD-ion trap-MS를 이용한 인동 생리활성 물질의 동시분석)

  • Ryu, Sung-Kwang;Won, Tae-Hyung;Kang, Sam-Sik;Shin, Jong-Heon
    • YAKHAK HOEJI
    • /
    • v.54 no.3
    • /
    • pp.157-163
    • /
    • 2010
  • A high-performance liquid chromatography (HPLC) with DAD detector and electrospray ionization mass spectrometry (ESI-MS) was established for the simultaneous determination of coniferin (1), loganic acid (2), demethylsecologanol (3), sweroside (4) and loganin (5) from caulis Lonicera joponica. The optimal chromatographic conditions were obtained on an ODS column ($5{\mu}m$, $4.6{\times}150mm$) with the column temperature $35^{\circ}C$. The mobile phase was composed of (A) water with 0.1% formic acid and (B) methanol with 0.1% formic acid using a gradient elution, the flow rate was 0.3 ml/min. Detection wavelength was set at 254 nm. All calibration curves showed good linear regression ($r^2$>0.998) within test ranges. The developed method provided satisfactory precision and accuracy with overall intra-day and interday variations of 0.16~3.28% and 0.14~1.99%, respectively, and the overall recoveries of 99.39~105.89% for the five compounds analyzed. The verified method was successfully applied to quantitative determination of the two types (phenolic compounds and iridoids) of bioactive compounds in 24 commercial caulis L. japonica samples from different markets in Korea and China. The analytical results demonstrated that the contents of the five analytes vary significantly with sources.

Simultaneous Analysis of Bioactive Metabolites from Lonicera japonica Flower Buds by HPLC-DAD-MS/MS (HPLC-DAD-MS/MS를 이용한 금은화 생리활성 물질의 동시분석)

  • Ryu, Sung-Kwang;Jeon, Ju-Eun;Kang, Gyoung-Won;Kang, Sam-Sik;Shin, Jong-Heon
    • YAKHAK HOEJI
    • /
    • v.52 no.6
    • /
    • pp.446-451
    • /
    • 2008
  • A high-performance liquid chromatography (HPLC) with diode array detector (DAD) and electrospray ionization mass spectrometry (ESI-MS) was established for the simultaneous determination of chlorogenic acid (1), sweroside (2), luteolin-7-O-glucoside (3), (E)-aldosecologanin (4) and 3,5-dicaffeoylquinic acid (5) from Lonicera joponica flower buds. The optimal chromatographic conditions were obtained on an ODS column (5 ${\mu}m$, 4.6${\times}$150 mm) with the column temperature $25^{\circ}C$. The mobile phase was composed of (A) water with 0.1% formic acid and (B) acetonitrile with 0.1% formic acid using a gradient elution, the flow rate was 0.3 ml/min. Detection wavelength was set at 250 nm. All calibration curves showed good linear regression ($r^2$>0.994) within test ranges. The developed method provided satisfactory precision and accuracy with overall intra-day and inter-day variations of 0.05${\sim}$1.95% and 0.15${\sim}$2.26%, respectively, and the overall recoveries of 97.71${\sim}$103.65% for the five compounds analyzed. The verified method was successfully applied to quantitative determination of the three types (phenolic compounds, iridoids and flavonoids) of bioactive compounds in 21 commercial L. japonica flower buds samples from different markets in Korea and China. The analytical results demonstrated that the contents of the five analytes vary significantly with sources.

Root Bark of Morus alba L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/β-Catenin Pathway

  • Song, Geu Rim;Choi, Yoon Jung;Park, Soo Jin;Shin, Subeen;Lee, Giseong;Choi, Hui Ji;Lee, Do Yup;Song, Gyu-Yong;Oh, Sangtaek
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1559-1567
    • /
    • 2021
  • The root bark of Morus alba L. has cytotoxic activity against several types of cancer cells. However, little is known about its chemopreventive mechanisms and bioactive metabolites. In this study, we showed that M. alba L. root bark extracts (MRBE) suppressed β-catenin response transcription (CRT), which is aberrantly activated in various cancers, by promoting the degradation of β-catenin. In addition, MRBE repressed the expression of the β-catenin/T-cell factor (TCF)-dependent genes, c-myc and cyclin D1, thus inhibiting the proliferation of RPMI-8226 multiple myeloma (MM) cells. MRBE induced apoptosis in MM cells, as evidenced by the increase in the population of annexin VFITC-positive cells and caspase-3/7 activity. We identified ursolic acid in MRBE through LC/mass spectrum (MS) and observed that it also decreased intracellular β-catenin, c-myc, and cyclin D1 levels. Furthermore, it suppressed the proliferation of RPMI-8226 cells by stimulating cell cycle arrest and apoptosis. These findings suggest that MRBE and its active ingredient, ursolic acid, exert antiproliferative activity by promoting the degradation of β-catenin and may have significant chemopreventive potential against MM.

Biotoxic Cyanobacterial Metabolites Exhibiting Pesticidal and Mosquito Larvicidal Activities

  • Kumar, Ashok;Dhananjaya P. , Singh;Tyagi, M.B.
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.50-56
    • /
    • 2003
  • A freshwater bloom-forming cyanobacterium, Microcystis aeruginosa, and local soil isolate Scytonema sp. strain BT 23 were demonstrated to contain biotoxic secondary metabolites with pesticidal and mosquito larvicidal activities. A purified toxic constituent from M aeruginosa showed an absorption maximum at 230 nm and its toxicity symptoms, Rf value on TLC, and retention time observed ill an HPLC analysis were similar to those of the hepatotoxic heptapeptide microcystin-LR. The bioactive constituent of the Scytonema sp. was less polar in nature and exhibited two peaks at 240 and 285 m. When applied to two cruciffrous pests, Pieris brassicae and Plutella flostella, the crude extracts and toxic principles from the two cyanobacteria showed significant antifeedant activity in a no-choice bioassay, and at higher concenuations exhibited contact toxicity to the insect larvae. The purified toxin from M. aeruginosa was found to be more effective and produced 97.5 and $92.8\%$ larval mortality in the two pests, fo11owing 2 h of toxin treatment at a concentration of $25{\mu}g$ Per leaf disc (2.5 cm dia.). Meanwhile, similar treatment with the purified toxin from Sytonema sp. stain BT 23 only produced 73 and $78\%$ mortality in the two pests. The cyanobacterial constituents also showed significant activity against Culex and Anopheles larvae. The M. aeruginosa toxin ($20{\mu}g\;ml^-1$) caused 98.2 and $88.1\%$ mortality in the Culex and Anopheles larvae, respectively, while the purified toxin from the Sytonema sp. was less toxic and only produced a 96.3 and $91.2\%$ mortality, respectively, at a much higher concentration ($40{\mu}g\;ml^-1$). Accordingly, the current results point to certain hitherto unknown biological properties of cyanobacterial biotoxins.

Identification, Fermentation, and Bioactivity Against Xanthomonas oryzae of Antimicrobial Metabolites Isolated from Phomopsis longicolla S1B4

  • Lim, Chae-Sung;Kim, Ji-Young;Choi, Jung-Nam;Ponnusamy, Kannan;Jeon, Yul-Taek;Kim, Soo-Un;Kim, Jeong-Gu;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.494-500
    • /
    • 2010
  • Bacterial blight, an important and potentially destructive bacterial disease in rice, is caused by Xanthomonas oryzae. Recently, this organism has developed resistance to available antibiotics, prompting scientists to find a suitable alternative. This study focused on secondary metabolites of Phomopsis longicolla to target X. oryzae. Five bioactive compounds were isolated by activity-guided fractionation from ethyl acetate extracts of mycelia and were identified by LC/MS and NMR spectroscopy as dicerandrol A, dicerandrol B, dicerandrol C, deacetylphomoxanthone B, and fusaristatin A. This is the first time fusaristatin A has been isolated from Phomopsis sp. Deacetylphomoxanthone B showed a higher antibacterial effect against X. oryzae KACC 10331 than the positive control (2,4-diacetyphloroglucinol). Dicerandrol A also showed high antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) and yeast (Candida albicans). In addition, high production yields of these compounds were obtained at the stationary and death phases.

Anti-inflammatory effects of Nelumbo leaf extracts and identification of their metabolites

  • Park, Eunkyo;Kim, Gyoung Deuck;Go, Min-Sun;Kwon, Dodan;Jung, In-Kyung;Auh, Joong Hyuck;Kim, Jung-Hyun
    • Nutrition Research and Practice
    • /
    • v.11 no.4
    • /
    • pp.265-274
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Nelumbo leaves have been used in traditional medicine to treat bleeding, gastritis, hemorrhoids, and halitosis. However, their mechanisms have not been elucidated. MATERIALS/METHODS: The present study prepared two Nelumbo leaf extracts (NLEs) using water or 50% ethanol. Inflammatory response was induced with LPS treatment, and expression of pro-inflammatory mediators (inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin (IL)-$1{\beta}$, and IL-6 and nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) productions were assessed. To determine the anti-inflammatory mechanism of NLEs, we measured nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity. Major metabolites of NLEs were also analyzed and quantified. RESULTS: NLEs effectively reduced the expression and productions of pro-inflammatory mediators such as IL-$1{\beta}$, IL-6, TNF-${\alpha}$, $PGE_2$, and NO. NLEs also reduced NF-${\kappa}B$ activity by inhibiting inhibitor of NF-${\kappa}B$ phosphorylation. Both extracts contained catechin and quercetin, bioactive compounds of NLEs. CONCLUSIONS: In this study, we showed that NLEs could be used to inhibit NF-${\kappa}B$-mediated inflammatory responses. In addition, our data support the idea that NLEs can ameliorate disease conditions involving chronic inflammation.

Transcriptome profiling and identification of functional genes involved in H2S response in grapevine tissue cultured plantlets

  • Ma, Qian;Yang, Jingli
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1287-1300
    • /
    • 2018
  • Hydrogen sulfide ($H_2S$), a small bioactive gas, has been proved functioning in plant growth and development as well as alleviation of abiotic stresses, which including promoting seed germination, accelerating embryonic root growth, regulating flower senescence, inducing stomatal closure, and defending drought, heat, heavy metals and osmotic stresses etc. However, the molecular functioning mechanism of $H_2S$ was still unclear. The primary objective of this research was to analyze the transcriptional differences and functional genes involved in the $H_2S$ responses. In details, 4-week-old plantlets in tissue culture of grapevine (Vitis vinifera L.) cultivar 'Zuoyouhong' were sprayed with 0.1 mM NaHS for 12 h, and then transcriptome sequencing and qRT-PCR analysis were used to study the transcriptional differences and functional genes involved in the $H_2S$ responses. Our results indicated that 650 genes were differentially expressed after $H_2S$ treatment, in which 224 genes were up-regulated and 426 genes were down-regulated. The GO enrichment analysis and KEGG enrichment analysis results indicated that the up-regulated genes after $H_2S$ treatment focused on carbon metabolism, biosynthesis of amino acids, and glycolysis/gluconeogenesis, and the down-regulated genes were mainly in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. Analyzing the transcription factor coding genes in details, it was indicated that 10 AP2/EREBPs, 5 NACs, 3 WRKYs, 3 MYBs, and 2 bHLHs etc. transcription factor coding genes were up-regulated, while 4 MYBs, 3 OFPs, 3 bHLHs, 2 AP2/EREBPs, 2 HBs etc. transcription factor coding genes were down-regulated. Taken together, $H_2S$ increased the productions in secondary metabolites and a variety of defensive compounds to improve plant development and abiotic resistance, and extend fruits postharvest shelf life by regulating the expression of AP2/EREBPs, WRKYs, MYBs, CABs, GRIP22, FERRITINs, TPSs, UGTs, and GHs etc.

Comparative Transcriptomic Analysis of MAPK-Mediated Regulation of Sectorization in Cryphonectria parasitica

  • Chun, Jeesun;So, Kum-Kang;Ko, Yo-Han;Kim, Jung-Mi;Kim, Dae-Hyuk
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.363-375
    • /
    • 2019
  • Fungal sectorization is a complex trait that is still not fully understood. The unique phenotypic changes in sporadic sectorization in mutants of CpBck1, a mitogen-activated protein kinase kinase kinase (MAPKKK) gene, and CpSlt2, a mitogen-activated protein kinase (MAPK) gene, in the cell wall integrity pathway of the chestnut blight fungus Cryphonectria parasitica have been previously studied. Although several environmental and physiological factors cause this sectoring phenotype, genetic variants can also impact this complex morphogenesis. Therefore, RNA sequencing analysis was employed to identify candidate genes associated with sectorization traits and understand the genetic mechanism of this phenotype. Transcriptomic analysis of CpBck1 and CpSlt2 mutants and their sectored progeny strains revealed a number of differentially expressed genes (DEGs) related to various cellular processes. Approximately 70% of DEGs were common between the wild-type and each of CpBck1 and CpSlt2 mutants, indicating that CpBck1 and CpSlt2 are components of the same MAPK pathway, but each component governs specific sets of genes. Functional description of the DEGs between the parental mutants and their sectored progenies revealed several key pathways, including the biosynthesis of secondary metabolites, translation, amino acid metabolism, and carbohydrate metabolism; among these, pathways for secondary metabolism and translation appeared to be the most common pathway. The results of this comparative study provide a better understanding of the genetic regulation of sector formation and suggest that complex several regulatory pathways result in interplays between secondary metabolites and morphogenesis.