• Title/Summary/Keyword: bio-technology

Search Result 5,492, Processing Time 0.029 seconds

Production of Bio-Carbon from Unused Biomass through CO2 Activation: Removal Characteristics of Formaldehyde and Acetaldehyde (미이용 바이오매스의 이산화탄소 활성화를 통한 바이오카본 생산: 포름알데하이드 및 아세트알데하이드 제거 특성)

  • Kim, JongSu;Choi, SeukCheun;Lee, Uendo;Park, EunSeuk;Jeong, Soohwa
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.325-331
    • /
    • 2021
  • In this study, bio-carbons were produced by activation process from unused biomass (Grade 3 wood pellet and spent coffee grounds) to determine the removal performance of formaldehyde and acetaldehyde. The activation experiments were conducted in a fixed bed reactor using CO2 as an activation agent. The temperature of the activation reactor and input of CO2 were 900 ℃ and 1 L min-1 for all the experiments. The maximum BET surface area of about 788 m2 g-1 was obtained for bio-carbon produced from Grade 1 wood pellet, whereas about 544 m2 g-1 was achieved with bio-carbon produced from spent coffee grounds. In all the experiments, the bio-carbons produced were mainly found to have micro-porous nature. A lower ash amount in raw material was favored for the high surface area of bio-carbons. In the removal test of formaldehyde and acetaldehyde, the bio-carbon produced from spent coffee grounds showed excellent adsorption performance compared with woody biomass (Grade 1 wood pellet and Grade 3 wood pellet). In addition, the comparative experiment of commercial impregnated activated carbon and bio-carbon produced from spent coffee grounds was conducted. In terms of formaldehyde removal performance, the commercial impregnated bio-carbon was excellent, while bio-carbon produced from spent coffee grounds was excellent in acetaldehyde removal.

The Gasifier Operation Method using Bio Gas (바이오가스를 이용한 가스화기 운전 방안)

  • Lee, Joongwon;Joo, Yongjin;Chung, Jaehwa;Park, Seik;Kim, Uisik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.249-254
    • /
    • 2013
  • The integrated gasification combined cycle (IGCC) system is well known for its high efficiency compared with other coal fueled power generation system. The aim of this study is to confirm the feasibility of using bio gas in coal feeding system and syngas recirculation system. The effects of using bio gas in the gasifier on the syngas composition were investigated through simulations using the Aspen Plus process simulator. It was found that these changes had an influence on the syngas composition of the final stream and bio gas can be used in a gasifier system.