• Title/Summary/Keyword: bio-systems

Search Result 1,376, Processing Time 0.03 seconds

Changes in Goat productivity and Economical Efficiency at Feeding Systems by Castrated Growing Korean Native Goat(Capra hircus coreanae)

  • Yun, Yeong-Sik;Seong, Hye-Jin;Zhang, Qi-Man;Chung, Sang-Uk;Lee, Ga-Eul;Jang, Se-Young;Lee, Jin-wook;Lee, Sang-Hoon;Moon, Sang-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.3
    • /
    • pp.150-155
    • /
    • 2018
  • This study was conducted to determine grazing intensity of growing Korean native goats(Capra hircus coreanae) on mountainous pasture. It was carried out to obtain basic information for improvement of mountainous pasture management and establishing feeding system of Korean native goat. A total of 20 goats were grouped by feeding systems [A mountainous pasture grazing group (Concentrated feed of 1.5% body weight, treatment 1, T1, n=10) and a barn feeding group (TMR, treatment 2, T2), n=10] to conduct study from April to September. The average forage productivity of the mountain pasture was $500.9{\pm}61.41kg/ha$. The average dry matter intake in T1 was 0.64 and the calculated grazing intensity was 21 head/ha. In productivity, when the two treatments(T1, T2) were compared, the dry matter intake was about two to three times the difference. The average daily gain per day during the experiment was 63.3 in the mountain pasture and 120 g in barn feeding. When grazing, considering mountainous pasture productivity it is necessary to increase the productivity through proper feeding. The feed costs of black goats raised by grazing on the grassland in the same period showed an average 75% reduction compared to barn feeding. As a result of this study, it can be expected that a considerable reduction of feed costs can be expected in the breeding of Korean native black goat using the mountain pasture.

The Norwegian Model of Fisheries Bio-Resources Management (노르웨이 해역 수산생명자원 관리모델)

  • Oh, Hyun Taik;Lee, Won Chan;Song, Chi Mun;Kim, Hyung-Chul;Kim, Jeong-Bae;Jung, Rae-Hong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.2
    • /
    • pp.111-118
    • /
    • 2013
  • The Norwegian coastal area is the most efficient region for fishery production in the world's oceans, the Norway is the world's top 10 fisheries countries through efficient fishing and fishing aquaculture technology and its scientific management of fisheries bio-resources, with Norwegian salmon having attained the world's highest level. In the late 1980s, fisheries resources were depleted due to overfishing and fish diseases, resulting in a crisis in the fishing industry that lasted until the early 1990s. Since the national fishery emergency, people involved in the fishing industry, including fishermen, research scientists, and government officers, have tried to overcome the challenges facing the industry and identify an appropriate management model for fisheries bio-resources in the Norwegian coastal area. First, research vessels were used to monitor water and sediment conditions and fishery species, with the long-term aim of predicting fishery resources in real time and collecting information on species diversity, abundance, and distribution. Second, a "Healthy Fish Project" was promoted to counter natural disasters and fish disease problems with the development of vaccines against viruses and bacteria, eventually allowing for a decrease in the use of antibiotics and the production of notably healthier fish in the 2000s. Third, a systematic management model was developed to help with preparations for decreases in the total number of fishermen and increases in the proportion of elderly fishermen in the fishery industry using the development of automatic fishing aquaculture systems and short-chain systems. We could learn from the Norwegian model of fisheries bio-resources, management and could adopt it for the preparation of fishery bio-resources management policy for South Korean coastal areas in the near future.

A Bio-fluidic Device for Adaptive Sample Pretreatment and Its Application to Measurements of Escherichia coli Concentrations

  • Choi Won-Jae;Park Je-Kyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.54-60
    • /
    • 2006
  • In this paper, we describe a bio-fluidic device for adaptive sample pretreatment, in order to optimize the conditions under which absorbance assays can be conducted. This device can be successfully applied to the measurement of Escherichia coli (E. coli) concentrations using adaptive dilution, with which the dilution ratio can be adjusted during the dilution. Although many attempts have been previously made to miniaturize complex biochemical analyses at the chip scale, very few sample pretreatment processes have actually been miniaturized or automated at this point. Due to the lack of currently available on-chip pretreatments, analytical instruments tend to suffer from a limited range of analysis. This occasionally hinders the direct and quantitative analysis of specific analyses obtained from real samples. In order to overcome these issues, we exploit two novel strategies: dilution with a programmable ratio, and to-and-fro mixing. The bio-fluidic device consists of a rectangular chamber constructed of poly(dimethylsiloxane) (PDMS). This chamber has four openings, an inlet, an outlet, an air control, and an air vent. Each of the dilution cycles is comprised of four steps: detection, liquid drain, buffer injection, and to-and-fro mixing. When using adaptive sample pretreatment, the range in which E. coli concentrations can be measured is broadened, to an optical density (O.D.) range of $0.3{\sim}30$. This device may prove useful in the on-line monitoring of cell concentrations, in both fermenter and aqueous environments.

An Investigation of Emission of Particulate Matters and Ammonia in Comparison with Animal Activity in Swine Barns (양돈사 내 동물 활동도에 따른 암모니아 및 미세먼지 배출농도 특성 분석)

  • Park, Jinseon;Jeong, Hanna;Lee, Se Yeon;Choi, Lak Yeong;Hong, Se-woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.117-129
    • /
    • 2021
  • The movement of animals is one of the primary factors that influence the variation of livestock emissions. This study evaluated the relationship between animal activity and three major emissions, PM10, PM2.5, and ammonia gas, in weaning, growing, and fattening pig houses through continuous monitoring of the animal activity. The movement score of animals was quantified by the developed image analysis algorithm using 10-second video clips taken in the pig houses. The calculated movement scores were validated by comparison with six activity levels graded by an expert group. A comparison between PMs measurement and the movement scores demonstrated that an increase of the PMs concentrations was obviously followed by increased movement scores, for example, when feeding started. The PM10 concentrations were more affected by the animal activity compared to the PM2.5 concentrations, which were related to the inflow of external PM2.5 due to ventilation. The PM10 concentrations in the fattening house were 1.3 times higher than those in the weaning house because of the size of pigs while weaning pigs were more active and moved frequently compared to fattening pigs showing 2.45 times higher movement scores. The results also indicated that indoor ammonia concentration was not significantly influenced by animal activity. This study is significant in the sense that it could provide realistic emission factors of pig farms considering animal's daily activity levels if further monitoring is carried out continuously.

Atmospheric Dispersion of Particulate Matters (PM10 and PM2.5) and Ammonia Emitted from Livestock Farms Using AERMOD (AERMOD를 이용한 축산 미세먼지, 초미세먼지, 암모니아 배출의 대기확산 영향도 분석)

  • Lee, Se-Yeon;Park, Jinseon;Jeong, Hanna;Choi, Lak-Yeong;Hong, Se-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.13-25
    • /
    • 2021
  • The particulate matters (PM10 and PM2.5) and ammonia emitted from livestock farms as dispersed to urban and residential areas can increase the public's concern over the health problem, social conflicts, and air quality. Understanding the atmospheric dispersion of such matters is important to prevent the problems for the regulatory purposes. In this study, AERMOD modeling was performed to predict the dispersion of livestock particulate matters and ammonia in Gwangju metropolitan city and five surrounding cities. The five cities were divided into 40 sub-zones to model the area-based emissions which varied with the number of livestock farms, species and growth stages of the animals. As a result, the concentrations of PM10, PM2.5 and ammonia resulted from livestock farms located in the surrounding cities were 2.00 ㎍ m-3, 0.30 ㎍ m-3 and 0.04 ppm in the southwestern part of Gwangju based on the average concentration of 1 hour. These values accounted for 0.7% of PM10 concentration, 0.5% of PM2.5 concentration, and 0.4% of the ammonia concentration in Gwangju, contributing to a small amount of air pollution compared to other sources. As preventive measures, the plantation was applied to high emission source areas to reduce particulate matters and ammonia emissions by 35% and 31%, respectively, and resulted in decrease of the area of influence by 57% for particulate matters and 59% for ammonia.

X-ray grayscale lithography for sub-micron lines with cross sectional hemisphere for Bio-MEMS application (엑스선 그레이 스케일 리소그래피를 활용한 반원형 단면의 서브 마이크로 선 패턴의 바이오멤스 플랫폼 응용)

  • Kim, Kanghyun;Kim, Jong Hyun;Nam, Hyoryung;Kim, Suhyeon;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.170-174
    • /
    • 2021
  • As the rising attention to the medical and healthcare issue, Bio-MEMS (Micro electro mechanical systems) platform such as bio sensor, cell culture system, and microfluidics device has been studied extensively. Bio-MEMS platform mostly has high resolution structure made by biocompatible material such as polydimethylsiloxane (PDMS). In addition, three dimension structure has been applied to the bio-MEMS. Lithography can be used to fabricate complex structure by multiple process, however, non-rectangular cross section can be implemented by introducing optical apparatus to lithography technic. X-ray lithography can be used even for sub-micron scale. Here in, we demonstrated lines with round shape cross section using the tilted gold absorber which was deposited on the oblique structure as the X-ray mask. This structure was used as a mold for PDMS. Molded PDMS was applied to the cell culture platform. Moreover, molded PDMS was bonded to flat PDMS to utilize to the sub-micro channel. This work has potential to the large area bio-MEMS.

Application of bio-preservation to enhance food safety: A review

  • Nethma Samadhi Ranathunga;Kaushalya Nadeeshani Wijayasekara;Edirisinghe Dewage Nalaka Sandun Abeyrathne
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.179-189
    • /
    • 2023
  • Consumers and industry experts frequently have negative perceptions of most chemical preservatives. Although most people concede that they cannot resolve global food waste issues without preservatives, they prefer products without chemical preservatives. Numerous emerging technologies is now surpassing conventional methods for mitigating microbial food deterioration in response to consumer demand and fundamental health and safety considerations, including biological antimicrobial systems such as using food-grade microorganisms and their metabolites primarily originating from microorganisms, plants, and animals. Microbial compounds, including bacteriocins, bacteriophages, and anti-fungal agents, plant extracts such as flavonoids and essential oils; and animal-originated compounds, such as lysozyme, chitosan, and lactoferrin, are considered some of the major bio-preservatives. These natural compounds can be used alone or with other preservatives to improve food safety. Hence, the use of microbes or their metabolic byproducts to extend the shelf life of foods while maintaining safety standards is known as bio-preservation. To manufacture and consume foods in a safe condition, this review primarily aims to broaden knowledge amongst industry professionals and consumers regarding bio-preservation techniques, bio-preservatives, their classifications, and distinctive mechanisms to enhance food safety.

Estimation of Pollution Sources of Oenam Watershed in Juam Lake using Nitrogen Concentration and Isotope Analysis (주암호 외남천 유역 하천수의 질소농도와 동위원소비 분석을 이용한 오염원 평가)

  • Choi, Yujin;Jung, Jaewoon;Choi, Woojung;Yoon, Kwangsik;Choi, Dongho;Lim, Sangsun;Jeong, Juhong;Lim, Byungjin;Chang, Namik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.467-474
    • /
    • 2011
  • In an effort to investigate water pollution characteristics of Juam lake, water samples were collected from three sites (Sites A, B, and C) of Oenam stream which is a typical tributary of rural watershed in the lake and analyzed for N concentration and the corresponding isotope ratio (${\delta}^{15}N$) of ${NO_3}^-$. Concentrations of ${NO_3}^-$ were not dramatically different among the sites; $0.8{\pm}0.2mgNL^{-1}$ (range: $0.0{\sim}4.3mgNL^{-1}$) for Site A, $1.1{\pm}0.2mgNL^{-1}$ ($0.0{\sim}4.3mgNL^{-1}$) for Site B, and $1.1{\pm}0.1mgNL^{-1}$ ($0.1{\sim}2.6mgNL^{-1}$) for Site C. Meanwhile, ${\delta}^{15}N$ tended to decrease with river flow; it was highest for Site A ($45.5{\pm}5.3$‰) followed by Site B ($19.7{\pm}2.0$‰) and Site C ($8.7{\pm}1.5$‰). Such high ${\delta}^{15}N$ values of ${NO_3}^-$ in Site A suggested that ${NO_3}^-$ derived from livestock feedlot (specifically livestock excrete of which ${\delta}^{15}N$ is higher than 10‰) is the predominant pollution sources despite mountainous area occupied the most of land-use in the watershed. Using the two-sources isotope mixing model, it was estimated that the contribution of cropping activities (i.e. fertilization) became greater in down-stream area (Sites B and C) due to the higher agricultural land-use than the up-stream area (Site A). Particularly, during the active cropping season, the low contribution of organic pollution sources indicated that domestic sewage was not the predominant pollution source. Therefore, it was suggested that agricultural sources such as livestock farming and cropping rather than mountainous and residential are the dominant sources of water pollution in the study area. These results could be effectively utilized in elucidating water pollution sources in rural areas and selecting water management practices.

Development of GASS2 through Improving Inter-component Connection and Communication Modules (연결성과 소통구조 모듈을 통한 차세대 범용 농업시스템 시뮬레이터 (GASS2)의 개발)

  • Kim, Tae Gon;Lee, Sung Yong;Yi, Ho Jae;Lee, Jeong Jae;Suh, Kyo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.29-36
    • /
    • 2014
  • The purpose of this study is to improve the Generic Agricultural Systems Simulator (GASS) which can simulate various rural systems based on object-oriented model. GASS provides the configuration platform of various system components to simplify integrated agricultural system models such as irrigation systems for rice farming. The new connection and communication modules of GASS improve applicability for modelling diverse systems. The geometric connection of GASS replaces topological connection, and communication protocols expand to analyze not only homogeneous system but also heterogeneous system. In this paper, we applied GASS2 to simulate the water heights of linked tanks and the simulation outputs were verified through comparing with analytical solutions of differential equations. The two new modules make it possible to analyze the 4-tank problem which includes topological and heterogenous issues with GASS2.

Relative Measurement of Differential Electrode Impedance for Contact Monitoring in a Biopotential Amplifier

  • Yoo, Sun-K.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.601-605
    • /
    • 2007
  • In this paper, we propose a simple and relative electrode contact monitoring method. By exploiting the power line interference, which is regarded as one of the worst noise sources for bio-potential measurement, the relative difference in electrode impedance can be measured without a current or voltage source. Substantial benefits, including no extra circuit components, no degradation of the body potential driving circuit, and no electrical safety problem, can be achieved using this method. Furthermore, this method can be applied to multi-channel isolated bio-potential measurement systems and home health care devices under a steady measuring environment.