• Title/Summary/Keyword: bio-reactor

Search Result 229, Processing Time 0.022 seconds

Technical Evaluation of MBR Process for the Wastewater Treatment of Beverage Fabrication Processes (음료수 제조 공정 폐수의 MBR 처리 기술 평가)

  • Jung, Cheol Joong;Park, Jong Min;Kim, Youn Kook
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • Manufacturing facility for non-alcoholic drink, the parts of the food industry, disposes wastewater which includes high organic concentration and low nitrogen, phosphorus concentration. For this kind of wastewater, the treatment plant consists mainly of aerobic reactor and chemical coagulation process. And sand-filter or activated carbon process is normally installed further. However, aerobic reactor must have long HRT to treat high concentration of organic contaminant included in this wastewater, so the large site area is required. And settling tank which is normally applied for wastewater treatment facility has some problems such as water quality degradation caused by the sludge spill. To solve these problems, we applied MBR system for the wastewater. And the MBR pilot plant was installed nearby the wastewater treatment facility of W food factory and operated during long term to evaluate treatment efficiency. This plant was operated about 3 months and than the result was 97% of organic removal rate on conditions of flow rate $20m^3/day$, HRT 29 hr, recycle 4Q. However, contaminant removal ratio of bio-reactor decreased and TMP of membrane increased rapidly on more conditions.

Effect of the Recycling of Non-condensable Gases on the Process of Fast Pyrolysis for Palm Wastes (미응축가스 재순환에 따른 팜 부산물 급속열분해 반응 공정 특성)

  • Oh, Changho;Lee, Jang Hoon
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.233-238
    • /
    • 2018
  • Bio-oil is produced by the fast quenching of hot vapor produced by fast pyrolysis of biomass in an inert atmosphere. Nitrogen is used as carrier gas to control the concentration of oxygen less than 3%. The consumption of nitrogen should be increased with increasing process size, and leading to increasing of facility and operating costs due to nitrogen charge. The effects of the recycling of non-condensable gases on the fast pyrolysis, bio-oil yield and quality, and nitrogen consumption have systematically investigated to see the possibility of these results in fast pyrolysis process of palm residue.

Effect of Pig Feces and Pig Waste Mixture Compositions on Bio-oil Production by Pyrolysis Process (돈분과 돈슬러리의 성분이 열분해공정에 의한 바이오오일 생산효율에 미치는 영향)

  • Zhu, Kun;Choi, Hong Lim;Shin, Jongdu;Paek, E
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.29-35
    • /
    • 2009
  • Pyrolysis is recently used as one of alternative methods of animal waste treatment. In this study bio-oil was produced at $550^{\circ}C$ in an auger reactor through pyrolysis process. Two pig waste mixtures were used, pig feces mixed with rice husks and pig feces mixed with sawdust. The main compositions of hemicellulose, lignin, cellulose, protein, and fat were analyzed chemically. Based on the main composition results obtained, the contents of holocellulose (the sum of hemicellulose and cellulose) and lignin had a significant positive effect on bio-oil production, and there was a significant negative effect of ash content on bio-oil yield. The interactions between the different feedstocks were evaluated, and it was concluded that the interaction between pig feces and rice husks was minimal, whereas the interaction between pig feces and sawdust was significant.

  • PDF

The Effect of Wastewater Treatment by Rotating Biological Contactors with HBR (미생물배양조를 결합한 회전원판법에 의한 하수처리 효과)

  • Lim, Bong Su;Oa, Seong Wook;Chung, Won Moon
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.501-512
    • /
    • 2000
  • This study was carried out to develop the new process for RBC process which is capable of nutrient removal and to obtain its design parameters for Sludge Settling Type Rotating Biological Contactors by comparing RBC with RBC combined with HBR (Hanmee Bio-Reactor). To achieve more than 90% of organic removal efficiency, organic loading rate less than $6.0g\;BOD/m^2/d$ is recommended. Nitrification rate was about 90% at $6.0g\;BOD/m^2/d$. TN removal efficiency of RBC+HBR was higher than those of RBC1 and RBC2. TN removal efficiency at condition of $5.0g\;BOD/m^2/d$ was about 60% in RBC1. When BOD loading rate was $6.0g\;BOD/m^2/d$. TN removal efficiencies in RBC2 and RBC+HBR were about 70%, 80%, respectively. TP removal efficiency was more than about 67% for RBC1, about 63% for RBC2 and about 71 % for RBC+HBR at the same loading rate. From the blank experiment to observe removal efficiency in the first stage, it can be known that COD removal efficiency was about 30% and suspend solids settling rate was about 45%. It was proved that RBC+HBR is much better in sludge dewatering than RBC.

  • PDF

Effects of DO concentration on Simultaneous Nitrification and Denitrification(SND) in a Membrane Bioreactor(MBR) (MBR 단일 반응조에서 용존산소 농도에 따른 동시 질산화-탈질반응(SND)의 영향)

  • Park, Noh-Back;Choi, Woo-Yung;Yoon, Ae-Hwa;Jun, Hang-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.371-377
    • /
    • 2009
  • In this study, simultaneous nitrification and denitrification (SND) from synthetic wastewater were performed to evaluate dissolved oxygen(DO) effects on chemical oxygen demand(COD) and nitrogen removal in a single membarne bio-reactor(MBR). DO levels in MBR at Run 1, 2, and 3 were 1.9~2.2, 1.3~1.6, and 0.7~1.0 mg/L, respectively. Experimental results indicated that DO had an important factor to affect COD and total nitrogen(TN) removal. SND were able to be accomplished in the continuous-aeration MBR by controlling ambient DO concentration. It is postulated that, because of the oxygen diffusion limitation, an anoxic micro-zone was formed inside the flocs where the denitrification might occur. From the results of this study, 96% of COD could be removed at DO of 0.7mg/L. At run 2 72.92% of nitrogen was removed by the mechanisms of SND (7.75mg-TN/L in effluent). In this study, SND was successfully occurred in a MBR due to high MLSS that could help to form anoxic zone inside microbial floc at bulk DO concentrations of 1.3~1.6mg/L.

Determination of Optimal Livestock Wastewater Treatment Process for Linked Treatment in Sewage Treatment Plant (하수처리장 연계처리를 위한 가축분뇨 최적 처리공정 선정에 관한 연구)

  • Kim, Choong Gon;Shin, Hyun Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.52-59
    • /
    • 2012
  • As the result of reviewing the linked treatment of water quality for treating process at public livestock wastewater treatment facilities for fair selection of the proper linked process in case of linking sewage treatment plant for livestock wastewater, in case of wastewater processed by bio-reactor that is only biologically-treated, the load factor showed relatively high as 1.67%(base on design quality), 2.59%(base on operation quality) regarding COD and 3.69%(base on design quality), 7.67%(base on operation quality) regarding $COD_{Mn}$ but it is judged that there is nearly no influence on the operation of sewage treatment plan. And, in case of oxidized flotation-treated water & biofiltlation-treated water that are the advanced wastewater treatment, the load factor is approximately 1% and there is concern about the installation of excessive facilities in case of installing the advanced wastewater treatment. So, in case of considering the economic efficiency & stable operation of sewage treatment plant S, it is judged to be desirable to link with wastewater processed by bio-reactor that is biologically-treated.

THE EFFECT OF AIR BUBBLES FROM DISSOLVED GASES ON THE MEMBRANE FOULING IN THE HOLLOW FIBER SUBMERGED MEMBRANE BIO-REACTOR (SMBR)

  • Jang, Nam-Jung;Yeo, Young-Hyun;Hwang, Moon-Hyun;Vigneswaran, Saravanamuthu;Cho, Jae-Weon;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.91-98
    • /
    • 2006
  • There is a possibility of the production of the air bubbles in membrane pores due to the reduction in pressure during membrane filtration. The effect of fine air bubbles from dissolved gases on microfiltration was investigated in the submerged membrane bio-reactor (SMBR). The $R_{air}$ (air bubble resistance) was defined as the filtration resistance due to the air bubbles formed from the gasification of dissolved gases. From the results of filtration tests using pure water with changes in the dissolved oxygen concentration, the air bubbles from dissolved gases were confirmed to act as a foulant and; thus, increase the filtration resistance. The standard pore blocking and cake filtration models, SPBM and CFM, respectively, were applied to investigate the mechanism of air bubble fouling on a hollow fiber membrane. However, the application of the SPBM and CFM were limited in explaining the mechanism due to the properties of air bubble. With a simple comparison of the different filtration resistances, the $R_{air}$ portion was below 1% of the total filtration resistance during sludge filtration. Therefore, the air bubbles from dissolved gases would only be a minor foulant in the SMBR. However, under the conditions of a high gasification rate from dissolved gases, the effect of air bubble fouling should be considered in microfiltration.

Development of PTFE Membrane Bio-reactor (MBR) for Integrating Wastewater Reclamation and Rainwater Harvesting (PTFE막을 이용한 빗물 중수 통합형 MBR 시스템 개발 및 성능 평가)

  • Lee, Taeseop;Kim, Youngjin;Ham, Sangwoo;Hong, Seungkwan;Park, Byungjoo;Shin, Yongil;Jung, Insik
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.269-276
    • /
    • 2012
  • The surface characteristics and performance of PTFE (polytetrafluoroethylene) hollow fiber membranes have been systematically investigated at lab- and pilot-scale to assess their application to membrane-bioreactor, particularly for integrating wastewater reclamation and rainwater harvesting. The PTFE membrane expressed some surface features, such as hydrophobicity, which might enhance membrane fouling. However, lab-scale performance and cleaning experiments under various conditions demonstrated that the PTFE membrane could produce the desirable water flux with good cleaning efficiency, implying easy operation and maintenance due to superior chemical resistance of PTFE membranes. Most of effluent water qualities were met with Korean standard for discharge and reuse, except color. Color level was further reduced by blending with rainwater at 75:25 ratio. Based on the lab-scale experimental results, the pilot plant was designed and operated. Pilot operation clearly showed sTable performance with satisfactory water quality, suggesting that PTFE membrane could be applied for decentralized MBR integrated with rainwater use.

The Effect of Chlorinated Ethenes and Electron Donor on VC Dehalogenation Rate (염화에텐류 화합물 및 전자공여체가 VC 탈염소화 속도에 미치는 영향)

  • Bae, Jae-Ho;Lee, Il-Su;Park, Young-Koo;Semprini, Lewis
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.436-443
    • /
    • 2007
  • Anaerobic reductive dehalogenation of perchloroethene (PCE) was studied with lactate as the electron donor in a continuously stirred tank reactor (CSTR) inoculated with a mixed culture previously shown to dehalogenate vinyl chloride (VC). cis-1,2- dichloroethene (cDCE) was the dominant intermediate at relatively long cell retention times (>56 days) and the electron acceptor to electron donor molar ratio (PCE:lactate) of 1:2. cDCE was transformed to VC completely at the PCE to lactate molar ratio of 1:4, and the final products of PCE dehalogenation were VC (80%) and ethene (20%). VC dehalogenation was inhibited by cDCE dehalogenation. Propionate produced from the fermentation of lactate might be used as electron donor for the dehalogenation. Batch experiments were performed to evaluate the effects of increased hydrogen, VC, and trichloroethene (TCE) on VC dehalogenation which is the rate-limiting step in PCE dehalogenation The addition of TCE increased the VC dehalogenaiton rate more than an increase in the $H_2$ concentration, which suggests that the introduction of TCE induces the production of an enzyme that can comtabolize VC.

Study on the Removal of Fluorescent Whitening Agent for Paper-mill Wastewater Reuse using the Submerged Membrane Bioreactor(SMBR) with Ozone Oxidation Process (제지폐수 재이용을 위한 침지형 생물막 여과와 오존산화공정(SMBR-Ozone Oxidation Process)에 의한 형광증백제 제거에 관한 연구)

  • Choi, Jang-Seung;Shin, Dong-Hun;Ryu, Seung-Han;Lee, Jae-Hun;Ryu, Jae-Young;Shin, Won-Sik;Lee, Seul-Ki;Park, Min-Soo;Lee, Sang Oh
    • Textile Coloration and Finishing
    • /
    • v.30 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • In this study, effluent water was produced through Submerged Membrane Bio-Reactor(SMBR) process, which is a simple system and decomposes organic matter contained in wastewater with biological treatment process and performs solid-liquid separation, Especially, ozone oxidation treatment process is applied to effluent water containing fluorescent whitening agent, which is a trace pollutant which is not removed by biological treatment, and influences the quality of reused water. The concentration of $COD_{Cr}$ in the SMBR was $449.3mg/{\ell}-COD_{Cr}$, and the concentration of permeate water was $100.3mg/{\ell}-COD_{Cr}$. The removal efficiency was about 70.1%. The amount of ozone required for the removal of the fluorescent whitening agent in the permeated water in SMBR was $6.67g-O_3/min$, and the amount of ozone required to remove $COD_{Mn}$ relative to the permeate water was calculated to remove $0.997mg-COD_{Mn}$ for 1mg of $O_3$.