Browse > Article
http://dx.doi.org/10.12925/jkocs.2007.24.4.15

The Effect of Chlorinated Ethenes and Electron Donor on VC Dehalogenation Rate  

Bae, Jae-Ho (Department of Environmental Engineering, Inha University)
Lee, Il-Su (School of Chemical, Bio, and Environmental Engineering, Oregon State University)
Park, Young-Koo (Department of Environmental Disaster Prevention Engineering, Kangwon National University)
Semprini, Lewis (School of Chemical, Bio, and Environmental Engineering, Oregon State University)
Publication Information
Journal of the Korean Applied Science and Technology / v.24, no.4, 2007 , pp. 436-443 More about this Journal
Abstract
Anaerobic reductive dehalogenation of perchloroethene (PCE) was studied with lactate as the electron donor in a continuously stirred tank reactor (CSTR) inoculated with a mixed culture previously shown to dehalogenate vinyl chloride (VC). cis-1,2- dichloroethene (cDCE) was the dominant intermediate at relatively long cell retention times (>56 days) and the electron acceptor to electron donor molar ratio (PCE:lactate) of 1:2. cDCE was transformed to VC completely at the PCE to lactate molar ratio of 1:4, and the final products of PCE dehalogenation were VC (80%) and ethene (20%). VC dehalogenation was inhibited by cDCE dehalogenation. Propionate produced from the fermentation of lactate might be used as electron donor for the dehalogenation. Batch experiments were performed to evaluate the effects of increased hydrogen, VC, and trichloroethene (TCE) on VC dehalogenation which is the rate-limiting step in PCE dehalogenation The addition of TCE increased the VC dehalogenaiton rate more than an increase in the $H_2$ concentration, which suggests that the introduction of TCE induces the production of an enzyme that can comtabolize VC.
Keywords
perchloroethene (PCE); vinyl chloride (VC); continuously strirred tank reactor (CSTR); cis-1,2-dichloroethene (cDCE); trichloroethene (TCE); cometabolism; lactate; hydrogen;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. R. Hendrickson, J. A. Payne, R. M. Young, M. G. Starr, M. P. Perry, S. Fahnestock, D. E. Ellis, and R. C. Ebersole, Molecular analysis of Dehalacoccaides 16S ribosomal DNA from chloroethene contaminated sites through North America and Europe. Appl. Environ Microbiol., 68, 485 (2002)   DOI   ScienceOn
2 J. Z. He, K. M. Ritalahti, K. L. Yang, S. S. Koenigsberg, and F. E. Loffler, Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium, Nature, 424, 62 (2003)   DOI   ScienceOn
3 Y. Yang and P. L. McCarty, Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture, Envrion. Sci. Technol., 32, 3591 (1998)   DOI   ScienceOn
4 J. M. Gossett, Measurement of Henry's law constants for $C_1$, $C_2$ chlorinated hydrocarbons, Envirion. Sci. Technol., 21(2), 202 (1987)   DOI
5 P. L. McCarty, Breathing with chlorinated solvents, Science, 276, 1521 (1997)   DOI
6 D. E. Fennell, J. M. Gossett, and S. H. Zinder, Comparison of butyric acid, ethanol, lctic acid, and propionic acid as hydrogen donors for reductive dechlorination of tetrachloroethene, Envrion Sci. Technol., 31(3), 918 (1997)   DOI   ScienceOn
7 X. Maymo-Gatell, T. Anguish, and S. H. Zinder, Reductive dechlorination of chlorinated ethenes and 1,2 dichloroethane by 'Debalococcoides ethenogens' 195, Appl. Environ. Microbiol., 65(7), 3108 (1999)
8 S. Yu and L. Semprini, Kinetics and modeling of reductive dechlorination at high PCE and TCE concentration. Biotech. Bioeng., 88(4), 451 (2004)   DOI   ScienceOn
9 D. E. Ellis, E. J. Lutz, J. M. Odom, R. J. Buchanan, C. L. Bartlett, M. D. Lee, M. R. Harkness, and K. A. Deweerd, Bioaugmentation for Accelerated In Situ Anaerobic Bioremediation, Environ Sci Technol. 34, 2254 (2000)   DOI   ScienceOn
10 Y. Yang and P. L. McCarty, Biomass, oleate, and other possible substrates fro chloroethene reductive dehalogenation, Bioremediation Journal, 4(2), 125 (2000)   DOI   ScienceOn
11 Yang, Y. and McCarty, P.L., 'Biologically enhanced dissolution of tetrachlorethene DNAPL,' Envirion. Sci. Technol., 34(22), 2979 (2000)   DOI   ScienceOn
12 C. Holliger, G. Schra, A. J. M. Stams, and A. J. B. Zehnder, A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth, Appl. Environ Microbiol., 59(9), 2991 (1993)
13 J. F. Furguson and J. M. H. Pietari, Anaerobic transformations and bioremediation of chlorinated solvents, Envrion. Pollut., 107, 209 (2000)   DOI   ScienceOn
14 S. Yu, M. E. Dolan and L. Semprini, Kinetics and inhibition of chlorinated ethylenes by two different mixed cultures. Environ Sci Technol, 39, 195 (2005)   DOI   ScienceOn
15 J.J. Westrick, J. W. Mello, and R. F. J. Thomas, Groundwater supply survey, J. Am Water Works Assoc., 76(5), 52 (1984)
16 D. M. Major, M. L. McMaster, E. E. Cox, E. A. Edwards, S. M. Dworatzek, E. R. Hendrickson, M. G. Starr, J. A. Payne, and L. W. Buonamici, Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethane. Enorion. Sci. Technol., 36, 5106 (2002)   DOI   ScienceOn
17 J. K. Magnuson, R. V. Stem, J. M. Gossett, S. J. Zinder, and D. R. Burris, Reductive dechlorination of tetrachloroethene to ethene by a two component enzyme pathway, Appl. Envron. Microbiol., 64(4), 1270 (1998)
18 M. R. Harkness, A. A. Bracco, M. J. Jr. Brennan, K. A. Deweerd, and J. L. Spivack, Use of bioaugmentation to stimulated complete reductive dechlorination of of trichloroethene in Dover soil columns, Envrion Sci. Technol., 33, 1100 (1999)   DOI   ScienceOn
19 Federal Resister, Code of Federal Regulation, Protection of the Environment, Parts 141 & 142, pp. 46885-46904 (1985)
20 S. Yu and L. Semprini, Comparison of trichloroethylene reductive dehalogenation by microbial communities stimuilated on silicon based organic compounds as slow release anaerobic substrates, Water Res., 36, 4985 (2002)   DOI   ScienceOn