• Title/Summary/Keyword: bio-gasification

Search Result 26, Processing Time 0.02 seconds

Thermochemical conversion of biomass in a fluidized bed pyrolyzer (유동층 열분해로에서의 바이오매스 열화학적 전환)

  • Lee Seehoon;Kim Younggu;Hong JaeChang;Yoon Sangjun;Choi Youngchan;Lee Jaegoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.467-470
    • /
    • 2005
  • 지구온난화 현상과 화석연료의 고갈에 대한 두려움 때문에 재생에너지에 대한 관심이 지속적으로 증가하고 있다. 이에 따라 대체에너지, 합성가스, 화학 원료, 오일 등으로 전환할 수 있는 바이오매스 활용에 대한 연구도 활발히 진행되고 있다. 바이오매스의 열화학적 전환 공정에는 열분해, 연소, 가스화 등이 이용되고 있다. 특히 열분해는 syringol, levoglucosan, guaiacol등의 고부가가치 물질들을 생산하기에 적합한 기술로 인정받고 있다. 본 연구에서는 국내에서 쉽게 구할 수 있는 톱밥, 폐목재 등의 바이오매스의 열화학적 전환 특성을 분석하였다. 사용된 바이오매스의 열분해 특성은 열중량 분석기 및 열천칭 반응기를 통해 분석하였으며 이를 통해 유동충 반응기(지름 0.2m, 높이 2m)를 설계 및 제작하였다. 반응온도 및 산소 농도가 증가할수록 levoglucosan 등의 고부가가치 물질들의 수율이 낮아지며 페놀류가 급격히 증가함을 알 수 있었다. 회재 성분이 높은 왕겨의 바이오오일 수율은 톱밥보다 $30\%$이상 낮게 나타났다

  • PDF

The Impacts of Operational Conditions on Charcoal Syngas Generation using a Modeling Approach (구동 조건에 따른 숯 합성가스 생산 효과 모델링)

  • Wang, Long;Hong, Seong Gug
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.107-119
    • /
    • 2013
  • 바이오매스 가스화는 세계적인 증가 추세에 있는 에너지 수요를 충족할 수 있는 기술 중의 하나이다. 바이오매스 가스화를 통해서 농업 폐기물 등 다양한 바이오매스 자원을 에너지로 전환할 수 있고 $CO_2$ 배출량 또한 줄일 수 있다. 본 연구에서는 COMSOL$^{(R)}$ 3.4 소프트웨어를 이용하여 바이오매스 원료와 운전 조건에 따른 가스화 효율 및 합성가스 조성의 변화를 분석하였다. 원료와 구동조건을 최적화하기 위해 가스화 모델을 세우고 원료와 구동조건을 달리하여 합성가스의 성분을 분석 및 예측하였다. 이 모델은 물리적인 실험을 통해 알고 있는 조건을 통해서 합성가스 성분을 시간에 따라 예측할 수 있다. 모델을 이용하여 함수비 5~30 %, 공기중 산소함량 5~50 %, 공기공급 유량 5~45 L/min, 온도 973~1273 K의 조건에서 합성가스의 성분을 예측한 결과 실제 실험 결과와 일치하는 것을 알 수 있다. 모델링 결과 양질의 합성가스를 생산하려면 원료의 회분함량이 적어야 하고 수소 함량이 높은 합성가스를 생산하려면 반응 온도가 높게 유지되고 원료의 함수비가 높아야 한다. 가스화장치의 온도를 높이면 합성가스의 성분 중 CO의 함량이 많아지고, CO의 함량이 많아지면 가스의 발열량이 높아지는 것을 알 수 있다. 또한 CO의 농도가 높고 발열량이 높은 합성가스를 생산하기 위해서는 ER값은 작아야 한다.

Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals

  • Joyce Mudondo;Hoe-Suk Lee;Yunhee Jeong;Tae Hee Kim;Seungmi Kim;Bong Hyun Sung;See-Hyoung Park;Kyungmoon Park;Hyun Gil Cha;Young Joo Yeon;Hee Taek Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • Polyethylene terephthalate (PET) is a plastic material commonly applied to beverage packaging used in everyday life. Owing to PET's versatility and ease of use, its consumption has continuously increased, resulting in considerable waste generation. Several physical and chemical recycling processes have been developed to address this problem. Recently, biological upcycling is being actively studied and has come to be regarded as a powerful technology for overcoming the economic issues associated with conventional recycling methods. For upcycling, PET should be degraded into small molecules, such as terephthalic acid and ethylene glycol, which are utilized as substrates for bioconversion, through various degradation processes, including gasification, pyrolysis, and chemical/biological depolymerization. Furthermore, biological upcycling methods have been applied to biosynthesize value-added chemicals, such as adipic acid, muconic acid, catechol, vanillin, and glycolic acid. In this review, we introduce and discuss various degradation methods that yield substrates for bioconversion and biological upcycling processes to produce value-added biochemicals. These technologies encourage a circular economy, which reduces the amount of waste released into the environment.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Results of the Precision Monitoring (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(II): 도시가스 및 수송용 - 정밀모니터링 결과 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.57-66
    • /
    • 2019
  • This study carried out on-site investigation and precision monitoring to prepare proper design and operation technical guidelines for the use of bio gas in organic waste resources (fertilizing urine, food waste, food waste, food waste, etc.). According to the government's mid- and long-term policy on bio gasification, the expansion of waste resources is actively being pushed forward. However, facilities that use the biogas produced for urban gas and transportation are still under-efficient. Precision monitoring was carried out for biogasification facilities of organic waste resources in seven locations nationwide. When the results of precision monitoring were summarized with the four-season average, the efficiency analysis of each organic waste resource showed that the organic breakdown rate was 66.3% on average on VS basis. Analysis of biogas characteristics before and after pretreatment revealed that the $H_2S$ average of the entire facility was measured at 949.7 ppm using iron salts and desulfurization (dry, wet) and that the quality refining facility shearing and rear end was 29.0 ppm and 0.3 ppm. The methane content was found to be reduced by 65.6% at the rear of the fire tank, 63.5% at the back and 97.5% at the rear.

Patent Analysis of Oil Sands Bitumen Upgrading Technologies (오일샌드 역청 개질 기술의 특허정보 분석)

  • Lee, Ki Bong;Jeon, Sang Goo;Nho, Nam Sun;Kim, Kwang Ho;Shin, Dae Hyun;Kim, Seon Wook;Kim, Yong Heon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.592-599
    • /
    • 2008
  • Oil sands had not received enough attention due to high production cost. However, as oil price significantly increases, oil sands are receiving more and more interest as unconventional crude oil. The value and applicability of oil sands can be enhanced by upgrading oil sands bitumen to produce synthetic crude oil (SCO). This study analyzed 213 oil sands upgrading patents applied between 1969 and 2006 in US, Canada, Japan, Europe, and Korea. The upgrading technologies could be classified into 9 detailed technologies; hydrocracking, coking, thermal cracking, deasphalting, supercritical technology, bio-technology, hydrotreating, gasification, and others. The number of patents applied for oil sands upgrading increased after 1970, reached a maximum in the early 1980, and slowly increases again in recent years. Korea has a lack of technologies for oil sands. Therefore, the technologies for oil sands production and application, specially, upgrading technologies based on accumulated oil refinery technologies need to be developed to increase self-development ratio of energy resource.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Results of the Field Investigation (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(I): 도시가스 및 수송용 - 현장조사 결과 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.77-85
    • /
    • 2019
  • Biogasification is a technology that uses organic wastes to reproduce as environmental fuels containing methane gas. Biogasification has attracted worldwide attention because it can produce renewable-energy and stable land treatment with prohibit from landfilling and ocean dumping of organic waste. Biomethane is produced by refining biogas. It is injected into natural gas pipeline or used transportation fuel such as cars and buses. 90 bio-gasification facilities are operating in 2016, and methane gas production is very low due to it is limited to organic wastes such as food waste, animal manure, and sewage sludge. There are seven domestic biomethane manufacturing facilities, and the use of high value-added such as transport fuels and city-gas through upgrading biogas should be expanded. On the other hand, the rapid biogasification of organic wastes in domestic resulted in frequent breakdowns of facilities and low efficiency problems. Therefore, the problem is improving as technical guidance, design and operational technical guidance is developed and field experience is accumulated. However, while improvements in biogas production are being made, there is a problem with low utilization. In this study, the problems of biomethane manufacturing facilities were identified in order to optimize the production and utilization of biogas from organic waste resources. Also, in order to present the design and operation guideline of the gas pretreatment and the upgrading process, we will investigate precision monitoring, energy balance and economic analysis and solutions for on-site problems by facility.