• Title/Summary/Keyword: bio-feedstock

Search Result 43, Processing Time 0.028 seconds

Assesment of Domestic Import Risk for Liquefied Natural Gas in Korea (국내 액화천연가스 도입구조의 위험성 평가)

  • Yu, Hyejin;Oh, Keun-Yeob;Cho, Wonjun;Lim, Oktaeck
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.1
    • /
    • pp.30-39
    • /
    • 2021
  • Natural gas is globally emerging as an important energy source for environmental, political and regional reasons. In Korea, natural gas imported from oversea natural gas resources as a LNG, it is increased for an applications as a fuel and feedstock which replace the coal and nuclear energy. Because it is relied on the import market in Korea, it is very important to analyze the security for supply. Therefore, this study suggested a method for reducing supply risk and for providing stable supply and demand through risk analysis of Korea's import structure. In order to reduce the supply risk, the concentration of importing countries should be lowered and it is necessary to lower the proportion of countries with relatively low GSSI and increase the imports from Russia. Finally increasing the number of importing countries or maintaining friendly relations with countries where the supply is stable could give us the positive impact in terms of total GSSI.

Catalytic Pyrolysis of Cellulose over SAPO-11 Using Py-GC/MS

  • Lee, In-Gu;Jun, Bo Ram;Kang, Hyeon Koo;Park, Sung Hoon;Jung, Sang-Chul;Jeon, Jong-Ki;Ko, Chang Hyun;Park, Young-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2399-2402
    • /
    • 2013
  • The catalytic pyrolysis of cellulose was carried out over SAPO-11 for the first time. Pyrolyzer-gas chromatography/mass spectroscopy was used for the in-situ analysis of the pyrolysis products. The acid sites of SAPO-11 converted most levoglucosan produced from the non-catalytic pyrolysis of cellulose to furans. In particular, the selectivity toward light furans, such as furfural, furan and 2-methyl furan, was high. When the catalyst/cellulose ratio was increased from 1/1 to 3/1 and 5/1, the increase in the quantity of acid sites led to the promotion of deoxygenation and the resultant increase of the contents of light furan compounds. Because furans can be used as basic feedstock materials, the augmentation of the economical value of bio-oil through the catalytic upgrading over SAPO-11 is considerable.

Microbial Production of Bacterial Cellulose Using Chestnut Shell Hydrolysates by Gluconacetobacter xylinus ATCC 53524

  • Jeongho Lee;Kang Hyun Lee;Seunghee Kim;Hyerim Son;Youngsang Chun;Chulhwan Park;Hah Young Yoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1479-1484
    • /
    • 2022
  • Bacterial cellulose (BC) is gaining attention as a carbon-neutral alternative to plant cellulose, and as a means to prevent deforestation and achieve a carbon-neutral society. However, the high cost of fermentation media for BC production is a barrier to its industrialization. In this study, chestnut shell (CS) hydrolysates were used as a carbon source for the BC-producing bacteria strain, Gluconacetobacter xylinus ATCC 53524. To evaluate the suitability of the CS hydrolysates, major inhibitors in the hydrolysates were analyzed, and BC production was profiled during fermentation. CS hydrolysates (40 g glucose/l) contained 1.9 g/l acetic acid when applied directly to the main medium. As a result, the BC concentration at 96 h using the control group and CS hydrolysates was 12.5 g/l and 16.7 g/l, respectively (1.3-fold improved). In addition, the surface morphology of BC derived from CS hydrolysates revealed more densely packed nanofibrils than the control group. In the microbial BC production using CS, the hydrolysate had no inhibitory effect during fermentation, suggesting it is a suitable feedstock for a sustainable and eco-friendly biorefinery. To the best of our knowledge, this is the first study to valorize CS by utilizing it in BC production.

Fuel characteristics of Yellow Poplar bio-oil by catalytic pyrolysis (촉매열분해를 이용한 백합나무 바이오오일의 연료 특성)

  • Chea, Kwang-Seok;Jeong, Han-Seob;Ahn, Byoung-Jun;Lee, Jae-Jung;Ju, Young-Min;Lee, Soo-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Bio-oil has attracted considerable interest as one of the promising renewable energy resources because it can be used as a feedstock in conventional petroleum refineries for the production of high value chemicals or next-generation hydrocarbon fuels. Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil products. In this study, catalytic pyrolysis was applied to upgrade bio-oil from yellow poplar and then fuel characteristics of upgraded bio-oil was investigated. Yellow Poplar(500 g) which ground 0.3~1.4 mm was processed into bio-oil by catalytic pyrolysis for 1.64 seconds at $465^{\circ}C$ with Control, Blaccoal, Whitecoal, ZeoliteY and ZSM-5. Under the catalyst conditions, bio-oil productions decreased from 54.0%(Control) to 51.4 ~ 53.5%, except 56.2%(Blackcoal). HHV(High heating value) of upgraded bio-oil was more lower than crude bio-oil while the water content increased from 37.4% to 37.4 ~ 45.2%. But the other properties were improved significantly. Under the upgrading conditions, ash and TAN(Total Acid Number) is decrease and particularly important as transportation fuel, the viscosity of bio-oil decreased from 6,933 cP(Control) to 2,578 ~ 4,627 cP. In addition, ZeoliteY was most effective on producing aromatic hydrocarbons and decreasing of from the catalytic pyrolysis.

AtMYB7 Acts as a repressor of lignin biosynthesis in Arabidopsis (애기장대 MYB7 유전자의 리그닌 생합성 억제 조절)

  • Kim, Won-Chan
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.3
    • /
    • pp.215-220
    • /
    • 2016
  • Abstract Secondary cell wall is the most abundant biomass produced by plants. Plant secondary cell wall is composed of a complex mixture of cellulose, hemicellulose, and lignin. Lignin, a phenolic polymer that hinders the degradation of cell wall polysaccharides to simple sugars destined for fermentation to bio-ethanol. Cell wall biosynthesis pathway-specific biomass engineering offers an attractive 'genetic pretreatment' strategy to improve bioenergy feedstock. Recently, we found a transcription factor, MYB7, which is a transcriptional switch that may turns off the genes necessary for lignin biosynthesis. To gain insights into MYB7 mediated transcriptional regulation, we first established a dominant suppression system in Arabidopsis by expressing MYB7-SRDX. Then we used a transient transcriptional activation assay to confirm that MYB7 suppress the transcription of the lignin biosynthetic gene. Taken together, we conclude that MYB7 function as a repressor of the genes involved in the lignin biosynthesis.

A review on thermochemical pretreatment in Lignocellulosic bioethanol production (목질계 바이오에탄올 제조공정에서 열화학적 전처리에 관한 고찰)

  • Ko, Jae-Jung;Yun, Sang-Leen;Kang, Sung-Won;Kim, Seog-Ku
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.79-88
    • /
    • 2008
  • The production of bioethanol, which is one of the alternative fuel, cause the various problem such as agflation in human society. As a substitute for the feedstock, lignocellulosic biomass have a big potential. However, bioethanol production with cellulosic material is not commercialized due to high cost. Thermochemical pretreatment to improve the rate of enzyme hydrolysis and increase the recovery of fermentable sugar, is required in order to achieve the cost down in bioethanol production. In this study, various problems and technologies for pretreatment is introduced. Acid hydrolysis, alkali hydrolysis, steam explosion, organosolv process, ammonia explosion, and wet oxidation pretreatment remove lignin and hemicellulose, and reduce cellulose crystallinity. Optimization of pretreatment process on various sources of lignocellulosic biomass such as softwood, hardwood, and straw should be performed.

  • PDF

Furfural production from miscanthus and utilization of miscanthus residues (Miscanthus로부터 furfural 생산과 잔여물의 활용에 관한 연구)

  • Kim, Sung Bong;Yoo, Hah-Young;Lee, Sang Jun;Lee, Ja Hyun;Choi, Han Seok;Kim, Seung Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.114.2-114.2
    • /
    • 2011
  • Furfural is a versatile derivative. It can be utilized for a building-block of furfuryl alcohol production and a component of fuels or liquid alkanes. But in bio-process, furfural is a critical compound because it inhibits cell growth and metabolism. Furfural could be converted from xylose and usually produced from biomass in which hemicellulose is abundant. In this study, furfural production from miscanthus was performed and utilization of miscanthus residue was consequently conducted. At first, hydrolysis for investigation of miscanthus composition and furfural production was performed using sulfuric acid. Previously, we optimized dilute acid pretreatment condition for miscanthus pretreatment and the condition was found to be about 15 min of reaction time, 1.5% of acid concentration and about $140^{\circ}C$ of temperature and 60% (about 7 g/L) of xylose was solubilized from miscanthus. Using the xylose, furfural production was conducted as second step. Approximately $160{\sim}200^{\circ}C$ of temperature was accompanied with the hydrolysis for pyrolysis of biomass. When the investigated condition; $180^{\circ}C$ of temperature, 20 min of reaction time and 2% of acid concentration was operated for furfural production, furfural productivity was reached to be 77% of theoretical maximum. After reaction, residue of miscanthus was utilized as feedstock of ethanol fermentation. Residue was well washed using water and saccharified using hydrolysis enzymes. Hydrolysate (glucose) from saccharification was utilized for the carbon source of Saccharomyces cervisiae K35.

  • PDF

Comparative Study of NIR-based Prediction Methods for Biomass Weight Loss Profiles

  • Cho, Hyun-Woo;Liu, J. Jay
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • Biomass has become a major feedstock for bioenergy and other bio-based products because of its renewability and environmental benefits. Various researches have been done in the prediction of crucial characteristics of biomass, including the active utilization of spectroscopy data. Near infrared (NIR) spectroscopy has been widely used because of its attractive features: it's non-destructive and cost-effective producing fast and reliable analysis results. This work developed the multivariate statistical scheme for predicting weight loss profiles based on the utilization of NIR spectra data measured for six lignocellulosic biomass types. Wavelet analysis was used as a compression tool to suppress irrelevant noise and to select features or wavelengths that better explain NIR data. The developed scheme was demonstrated using real NIR data sets, in which different prediction models were evaluated in terms of prediction performance. In addition, the benefits of using right pretreatment of NIR spectra were also given. In our case, it turned out that compression of high-dimensional NIR spectra by wavelet and then PLS modeling yielded more reliable prediction results without handling full set of noisy data. This work showed that the developed scheme can be easily applied for rapid analysis of biomass.

Enzymatic Saccharification of Salix viminalis cv. Q683 Biomass for Bioethanol Production

  • Kim, Hak-Gon;Song, Hyun-Jin;Jeong, Mi-Jin;Sim, Seon-Jeong;Park, Dong-Jin;Yang, Jae-Kyung;Yoo, Seok-Bong;Yeo, Jin-Ki;Karigar, Chandrakant S.;Choi, Myung-Suk
    • Journal of Forest and Environmental Science
    • /
    • v.27 no.3
    • /
    • pp.143-149
    • /
    • 2011
  • The possibility of employing biomass of Salix viminalis cv. Q683 as a resource of bio-energy was evaluated. The chemical analysis of S. viminalis cv. Q683 leaf biomass showed components such as, extractives (2.57%), lignin (39.06%), hemicellulose (21.61%), and cellulose (37.83%), whereas, its stem was composed of extractives (1.67%), lignin (23.54%), hemicellulose (33.64%), and cellulose (42.03%). The biomass of S. viminalis cv. Q683 was saccharified using two enzymes celluclast and viscozyme. The saccharification of S. viminalis cv. Q683 biomass was influenced by enzymes and their strengths. The optimal enzyme combination was found to be celluclast (59 FPU/g substrate) and viscozyme (24 FBG/g substrate). On saccharification the glucose from leaf and stem biomass was 7.5g/L and 11.7g/L, respectively after 72 hr of enzyme treatment. The biomass and enzyme-treated biomass served as the feedstock for ethanol production by fermentation. The ethanol production from stem and leaf biomass was 5.8 g/L and 2.2 g/L respectively, while the fermentation of the enzymatic hydrolysates yielded 5 g/L to 8 g/L bioethanol in 72 hours.