• Title/Summary/Keyword: bio-compatibility

Search Result 75, Processing Time 0.031 seconds

A Study on The Ultra-precision Polishing Method of Co-Cr-Mo alloy Using MR Fluid Polishing (MR Fluid Polishing을 이용한 Co-Cr-Mo alloy의 초정밀 연마 방법)

  • Shin, Bong-Cheol;Kim, Byung-Chan;Song, Ki-Hyeok;Cho, Myeong-Woo
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.8-12
    • /
    • 2017
  • In general, metallic bio-materials is more widely used in solid tissue like bone or tooth than flexible tissue such as skin or muscle. Especially, Cobalt Chrome Molybdenum(Co-Cr-Mo), which is used in tooth surgery, has a great corrosion resistance. Because this bio-material is non-toxic in human body, and has a bio-compatibility that the vital reaction is not occurred with tissue in body. However the chemical reaction is occurred by fatal matter that deteriorate the property of material surface in conventional polishing, and it can affect to fatal disease in human body or decrease the material properties such as hardness, yield strength or bio-compatibility. This surface in poor condition can cause development of corrosion or bacteria. In this study, MR fluid polishing is used to minimize the scratch, pit or surface flaws generated in conventional polishing. Surface roughness is measured according to the polishing condition to obtain fine surface condition.

Overview of Wood Plastic Composites: Focusing on Use of Bio-based Plastics and Co-extrusion Technique

  • Kim, Birm-June
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.499-509
    • /
    • 2014
  • Wood filler is a porous and anisotropic material having different size, shape, and aspect ratio. The use of wood fillers such as wood particle, wood flour, and wood pulp in wood plastic composites (WPCs) are growing rapidly because these wood fillers give improved strength and stiffness to WPCs. However, the wood fillers have originally poor compatibility with plastic matrix affecting the mechanical properties of WPCs. Therefore, to improve compatibility between wood and plastic, numbers of physical and chemical treatments were investigated. While the various treatments led to improved performances in WPC industries using petroleum-based plastics, full biodegradation is still issues due to increased environmental concerns. Hence, bio-based plastics such as polylactide and polyhydroxybutyrate having biodegradable characteristics are being applied to WPCs, but relatively expensive prices of existing bio-based plastics prevent further uses. As conventional processing methods, extrusion, injection, and compression moldings have been used in WPC industries, but to apply WPCs to engineered or structural places, new processing methods should be developed. As one system, co-extrusion technique was introduced to WPCs and the co-extruded WPCs having core-shell structures make the extended applications of WPCs possible.

Mating Behavior, Mycotoxin Production, and Vegetative Compatibility of Gibberella fujikuroi Species Complex from Sorghum in Korea

  • Lim, Sun-Hee;Yun, Sung-Hwan;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • v.17 no.5
    • /
    • pp.276-280
    • /
    • 2001
  • Fusarium isolates of Gibberella fujikuroi species complex were obtained from sorghum grown in five provinces of Korea in 1996 and 1997. These isolates were characterized based on their mating behavior, mycotoxin production, and vegetative compatibility. Only three mating populations (A, D, and F) were recovered from a total of 155 isolates examined. The relative frequency of the mating populations was significantly different: F was predominant (80%), while D and A were observed at low frequencies of 9% and 3%, respectively. Female fertile isolates were more common within F (44 our of 124) than D (2 out of 14), while none of the five A isolates were female fertile. The inbreeding effective population sizes ($\textrm{N}_e$)for mating type and male/hermaphrodite ratios in mating populations A and D produced significant amounts of fumonisins, while F isolates produced none or only traces of fumonisin B$_1$. In contrast. F isolates produced higher amounts of moniliformin (average of 3,820 ppm) than A and D isolates (averages of 77 and 1,819 ppm, respectively). Fifty-one isolates were tested for vegetative compatibility using nitrogen non-utilization mutants of each isolate, and 44 vegetative compatibility groups (VCGs) were identified. A single VC type (VC1) was found in all of the five A isolates examined. Six of the D isolates examined consisted of three VC types: two for VC2, two for VC3, and the rest for VC4. All of the F isolates tested were incompatible in every combination and , thus, each constituted a unique VCG.

  • PDF

Effects of a Compatibilizer on the Tensile Properties of Low-Density Polyethylene/Modified Starch Blends

  • Park, Jin-Woo;Kim, Gue-Hyun;Moon, Jin-Bok
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1287-1294
    • /
    • 2013
  • In this study, thermoplastic starch (TPS), cross-linked starch (CS), and cross-linked starch modified with glycerol (CTPS) were prepared, and the mechanical properties of the compatibilized low-density polyethylene (LDPE) blends (LDPE/TPS, LDPE/CS, and LDPE/CTPS) were investigated and compared with those of uncompatibilized LDPE/TPS, LDPE/CS, and LDPE/CTPS blends. Maleic-anhydride-grafted polyethylene was used as the compatibilizer. The enhanced tensile strength and elongation at break for the compatibilized LDPE/modified starch blends are a result of the improved compatibility between LDPE and the modified starch, which was confirmed by torque measurements and scanning electron microscopy.

Anomalous Permeation Observed in Fluoropolymer

  • Lee, Sang-Wha
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.140-143
    • /
    • 2004
  • Compatibility of polymeric materials governs their suitability for nearly all potential applications. An aspect of compatibility that is frequently important for fluoropolymers is their ability to isolate fluids by serving as a barrier to mass transport. This property is commonly expressed as permeability. In ideal cases, both solubility and diffusivity are constant at any given temperature and so the permeability is also a constant.(omitted)

  • PDF

Study on compatibility of cellulose ester/poly(ethylene-co-isosorbide terephthalate) solution blends (셀룰로오스 에스터와 Poly(ethylene-co-isosorbide terephthalate) 용액 블렌드의 상용성에 관한 연구)

  • Kim, Yeon-Hee;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3351-3356
    • /
    • 2014
  • Recently, Importance of studying based on biomass materials have increased due to the concern about plastic waste problems. Cellulose acetate butyrate (CAB) is a potential alternative to petroleum-based plastics because of its biodegradable property. Poly(ethylene-co-isosorbide terephthalate) (PEIT) is bio-based plastic, produced by isosorbide monomer. In this study, CAB/PEIT blends were prepared by solution blending to improve thermal stability of CAB. CAB and PEIT were dissolved in chloroform, and then precipitated in ethanol. To evaluate the compatibility of CAB/PEIT blends, the morphology and glass transition behaviors were analyzed by FE-SEM and DMA, respectively. TGA results revealed the improved thermal stabilities of the PEIT-rich and 50:50 compositions. No new or changed crystal structures were observed in the XRD result. Finally, CAB/PEIT solution blends showed good compatibility in overall compositions.

The Study to Diagnose the Road-Driver Compatibility II: Data Collection, Variable Selection and Parameter Quantification (운전자 주행 적합성 진단을 위한 연구 II: 생체신호 추출, 선정 및 정량화)

  • Kim, Jung-Yong;Yoon, Sang-Young;Park, Ji-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.1
    • /
    • pp.50-57
    • /
    • 2004
  • The aim of this study is to collect driver's psychophysiological signal under various road condition and to select and quantify psychophysiological variables for diagnosis of road-driver compatibility. A 4x4 vehicle with measuring devices was developed to collect driver's psychophysiological signal and collected driver's psychophysiological signal under various road conditions. The collected data were analyzed by the temporal pattern of signal overtime. Thirteen bio-signals with consistent pattern were selected and quantified in terms of slope and amplitude of the signal. These quantified values could be used as a part of tool to diagnose the road-driver compatibility.

The Study to Diagnose the Road-Driver Compatibility I: Comparison of Methods for Bio-Signal Analysis (운전자 주행 적합성 진단을 위한 연구 I: 생체신호 분석방법 비교)

  • Kim, Jung-Yong;Yoon, Sang-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.1
    • /
    • pp.44-49
    • /
    • 2004
  • The aim of this study is to compare the methods in analyzing bio-signals representing measure driver's psychophysiological staus. This study has considered three approaches: first, the deterministic approach calculating the mean and standard deviation of bio-signal, second, probabilistic approach converting driver's bio-signal values to probability density function and identifying individual state relative to overall distribution, and third, diagnostic approach identifying the pattern change of signal over certain period of time. For evaluation of analysis methods, driver's bio-signal was collected under various road conditions, and three analysis approaches were applied respectively. In result, the deterministic approach was found to be simple to use, but generated a large variability of bio-signal. The probabilistic approach provide a relative status of individual driver among overall population, but too much affected by temporal variability of individual driver. The diagnostic approach seemed to reasonably find driver's psychophysiological change over certain period of time, but still needs to develop quantification method of the bio-signal.

Bio-Piezoelectric Generator with Silk Fibroin Films Prepared by Dip-Coating Method (딥코팅에 의한 실크 피브로인막으로 제조한 바이오 압전발전기)

  • Kim, Min-Soo;Park, Sang-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.487-494
    • /
    • 2021
  • Piezoelectric generators use direct piezoelectric effects that convert mechanical energy into electrical energy. Many studies were attempted to fabricate piezoelectric generators using piezoelectrics such as ZnO, PZT, PVDF. However, these various inorganic/organic piezoelectric materials are not suitable for bio-implantable devices due to problems such as brittleness, toxicity, bio-incompatibility, bio-degradation. Thus, in this paper, piezoelectric generators were prepared using a silk fibroin film which is bio-compatible by dip-coating method. The silk fibroin films are a mixed state of silk I and silk II having stable β-sheet type structures and shows the d33 value of 8~10 pC/N. There was a difference in output voltages according to the thickness. The silk fibroin generators, coated 10 times and 20 times, revealed the power density of 16.07 μW/cm2 and 35.31 μW/cm2 using pushing tester, respectively. The silk fibroin generators are sensitive to various pressure levels, which may arise from body motions such as finger tapping, foot pressing, wrist shaking, etc. The silk fibroin piezoelectric generators with bio-compatibility shows the applicability as a low-power implantable piezoelectric generator, healthcare monitoring service, and biotherapy devices.