• 제목/요약/키워드: binding proteins

검색결과 1,472건 처리시간 0.025초

Molecular Properties of Excitation-Contraction Coupling Proteins in Infant and Adult Human Heart Tissues

  • Jung, Dai Hyun;Lee, Cheol Joo;Suh, Chang Kook;You, Hye Jin;Kim, Do Han
    • Molecules and Cells
    • /
    • 제20권1호
    • /
    • pp.51-56
    • /
    • 2005
  • Excitation-contraction coupling (ECC) proteins in the human heart were characterized using human atrial tissues from different age groups. The samples were classified into one infant group (Group A: 0.2-7 years old) and three adult groups (Group B: 21-30; Group C: 41-49; Group D: 60-66). Whole homogenates (WH) of atrial tissues were assayed for ligand binding, $^{45}Ca^{2+}$ uptake and content of ECC proteins by Western blotting. Equilibrium [$^3H$]ryanodine binding to characterize the ryanodine receptor (RyR) of the sarcoplasmic reticulum (SR) showed that the maximal [$^3H$]ryanodine binding ($B_{max}$) to RyR was similar in all the age groups, but the dissociation constant ($k_d$) of ryanodine was higher in the infant group than the adult groups. Oxalate-supported $^{45}Ca^{2+}$ uptake into the SR, a function of the SR SERCA2a activity, was lower in the infant group than in the adult groups. Similarly, [$^3H$]PN200-110 binding, an index of dihydropyridine receptor (DHPR) density, was lower in the infant group. Expression of calsequestrin and triadin assessed by Western blotting was similar in the infant and adult groups, but junctin expression was considerably higher in the adult groups. These differences in key ECC proteins could underlie the different $Ca^{2+}$ handling properties and contractility of infant hearts.

EFFECT OF CYCLOHEXIMIDE ON KAINIC ACID-INDUCED PROENKEPHALIN mRNA INCREASE IN THE RAT HIPPOCAMPUS: ROLE OF PROTO-ONCOGENES

  • Je-Seong. Won;Suh, Hong-Won;Song, Dong-Keun;Kim, Yung-Hi
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.180-180
    • /
    • 1996
  • Previous studies have shown that kainic acid (KA) causes an elevation of hippocampal proenkephalin mRNA level. However, the role of proto-oncogene products, such as c-Fos, c-Jun and Fra proteins in the regulation of KA-induced proenkephalin mRNA increase in the hippocampus has not been well characterized. Thus, in the present study, the effect of cycloheximide (CHX) on KA-induced proenkephalin mRNA and immediate early gene products induction was examined. After pretreating with either vehicle or CHX (20 mg/kg, s.c.) for 30 min, KA (10 mg/kg) was administered s.c. The animals were sacrificed 1,2, or 8 hrs after KA administration. Total RNA and were isolated for Northern blot assay, and proteins were isolated for Western and electrophoretic gel-shift assays. First, we found that CHX inhibited KA-induced proenkephalin mRNA increase without altering intracellular proenkephalin protein level. Secondly, Western blot assays showed that KA increased c-Fos, c-Jun and Fra proteins at 1,2, and 8 hrs and CHX inhibited these immediate early gene products. Finally, electrophoretic gel shift assays revealed that KA increased both AP-1 and ENKCRE-2 DNA binding activities. Furthermore, CHX attenuated KA-induced AP-1 and ENKCRE-2 DNA binding activities. Both AP-1 and ENKCRE-2 DNA binding activities were abolished by cold AP-1 or ENKCRE-2 oligonucleotides, and further reduced by antibodies against c-Fos or c-Jun. Antibody against CREB reduced ENKCRE-2, but not AP-1, DNA binding activity. Our results suggest that on-going protein synthesis is required for elevation of hippocampal proenkephalin mRNA level induced by KA. All c-Fos, c-Jun, and Fra proteins appears to be involved in the regulation of hippocampal proenkephalin mRNA level induced by KA (This study was supported by a grant from KOSEF).

  • PDF

암컷 랫트에서 Progesterone투여가 Insulin-like Growth Factors(IGFs) 및 IGF-binding proteins(IGFBPs)에 미치는 효과 (Effect of progesterone on insulin-like growth factors(IGFs) and IGF-binding proteins(IGFBPs) in female rat)

  • 김송군;박수현;강창원
    • 대한수의학회지
    • /
    • 제42권4호
    • /
    • pp.459-467
    • /
    • 2002
  • The sex steroid hormone progesterone is essential for normal development and maturation of the endometrium in preparation for the embryo implantation and the maintenance of pregnancy. Insulin-like growth factor (IGF) system that is composed of IGF-I, IGF-II, IGF binding proteins (IGFBPs) is also involved in the maintenance of pregnancy. In addition, liver, kidney, and uterus is a target tissue for IGF system. However, the effect of exogenous progesterone on IGF system was not elucidated in female rats. Therefore, we investigated the effect of progesterone on insulin-like growth factors (IGFs) and IGF-binding proteins in serum, liver, kidney, and uterus in female ovariectomized rats. IGFs concentration was measured by radioimmuoassay (RIA) and IGFBPs levels by western ligand blotting(WLB). IGF-I concentration was increased in serum, liver, and uterus, but not in kidney of progesterone-treated ovariectomized rats, compared to control (P<0.05). IGF-II concentration was decreased in liver, but not in serum, kidney, and uterus of progesterone-treated rats, compared to control (P<0.05). IGFBP-3 was increased in serum, but not in liver of progesterone-treated rats, compared to control. IGFBP-2 was decreased in kidney, but not in others tissues of progesterone-treated rats, compared to control. These results suggest that progesterone may exert diverse physiological functions via the tissue-specific regulation of IGFs/IGFBPs system in female rats.

Paralytic Peptide Binding Protein (PP-BP) Gene Expression During Egg Diapause and Its Multi-Gene Organization in the Silkworm Bombyx mori

  • Sirigineedi, Sasibhushan;Murthy, Geetha N.;Rao, Guruprasada;Ponnuvel, Kangayam M.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제26권1호
    • /
    • pp.31-40
    • /
    • 2013
  • Paralytic peptide binding proteins (PP-BP) are 30KP proteins that show similarity to ENF binding proteins. The ENF-BP act as active regulators of ENF peptides. ENF peptides are multifunctional insect cytokines. The comparison of gene expression in diapause induced and non-diapause eggs at different time intervals after oviposition showed an upregulation of PP at 18h as well as PP-BP at 12 and 18h after oviposition along with few other genes. The current study has been taken up to investigate the role of PP as well as PP-BP in diapause induction in polyvoltine silkworms and to study the multigene organization of PP-BP in the Bombyx mori genome. The tissue specific expression analysis revealed that, PP-BP is highly expressed in fat body followed by egg and brain while no expression was observed in midgut. The expression levels of PP and PP-BP in diapause and non-diapause eggs from 0h to 48h after oviposition, validated through realtime PCR revealed that PP is highly expressed at 18 and 24h while PP-BP expression is higher at 12 and 18h time intervals suggesting their possible role in diapause induction. The whole genome survey of the PP-BP paralogous sequences revealed a total of 46 B. mori PP-BP homologs that are classified into 3 categories viz., ENF-BP, Typical 30KPs and serine/threonine rich 30KPs. These paralogous sequences are distributed on chromosomes 7, 20, 22 and 24, all 30KP and S/T rich 30KP proteins are present in the same locus of chromosome 20.

Effect of ABA on Disassembly of Chloroplast during Senescence in Detached Leaves of Zea mays

  • Lee, Dong-Hee;Seo, Young-Hee;Kim, Young-Sang
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제3권3호
    • /
    • pp.177-188
    • /
    • 1999
  • The effect of ABA on the chloroplast disassembly of Zea mays was investigated by measuring the changes in the relative distribution of chlorophyll(Chl) between the Chl-protein complexes in ABA treated and untreated sensecting leaves. The reaction center(RC)-light harvesting complex(LHC) regions were rapidly disassembled in the late stage of dark-induced senescence. Plus, during dark-induced senescence, the disassembly of a reaction center of P700 apoproteins containing mainly Chl a was faster than that of a reaction center of LHCI apoproteins containing both Chl a and Chl b. The increase in the relative distribution of Chl-protein complexes in the RC-Core2 in the late stage of senescence was due to the accumulation of core complexes such as CP47/43 and reaction centers including D1/D2 apoproteins disassembled from the RC-Corel containing the dimer of D1/D2 apoproteins. The LHCII region was more stable than the other Chl-protein complexes throughout leaf senscence. Accordingly, it is suggested that the preferential breakdown of Chl a gives rise to the disassembly of Chl a-binding proteins, particularly reaction centers and core complexes during dark-induced senescence, plus the primary target of the photosynthetic apparatus in sensecing leaves would seem to be Chl a along with the proteins associated with Chl a. The application of ABA promoted the disassembly of the P700 apoproteins in the PSI reaction center and the dimer of D1/D2 apoproteins, and the conversion of the trimeric LHCII apoprotein to the monometirc LHCII apoprotein during the middle stage of leaf senescence, thereby suggesting that ABA accelerates the disassembly of both Chl a-binding and Chl a+b-binding proteins, particularly Chl a-binding proteins during the middle stage of leaf senescence.

  • PDF

RNA 결합 단백질과 유전자 발현조절 (RNA Binding Proteins and its Regulation of Gene Expression)

  • 노경희;강한철;김종범;김현욱;이경렬;김순희
    • Journal of Applied Biological Chemistry
    • /
    • 제58권3호
    • /
    • pp.201-208
    • /
    • 2015
  • RNA 결합 단백질들이 유전자 조절의 다양한 범위에 작용한다는 사실이 아주 중요하다. 유전자의 전사에 관련된 유전자 조절이 많이 연구가 되었어도 RNA의 조절에 관한 연구는 상대적으로 부진한 편이다. RNA 결합 단백질들은 RNA와 관련되는 각종 과정, 예를 들면 전사, pre-mRNA splicing, polyadenylation, 수송, 위치화, 번역, 분해 및 구조의 유지 등 다양한 범위에서 작용을 하고 있다. RNA 결합 단백질들의 많은 부분들이 아직 잘 알려지지 않고 있으며 유전자 발현에 대해 더 잘 이해하기 위해 이러한 부분의 연구가 더 수행되어야 한다. 최근에 유전학, 생화 학, 및 유전자들의 생물정보학의 발달 등으로 인하여. RNA 결합 단백질들의 다양한 분야들이 알려지고 있으며 이러한 부분들이 많은 관심을 받고 있다.

Streptococcus uberis의 락토페린 결합단백질 추출을 위한 두 가지 방법의 비교 (A Comparison of Two Methods for the Extraction of Lactoferrin-binding Proteins from Streptococcus uberis)

  • 박희명;유종현
    • 한국임상수의학회지
    • /
    • 제24권3호
    • /
    • pp.305-307
    • /
    • 2007
  • 락토페린 결합단백질(Lactoferrin-binding proteins, LBP)은 젖소유방염 원인균인 Streptococcus uberis의 막단백질로서 그 특성에 관해서는 잘 규명되어 있지 않지만, 특히 최근에는 스트렙토코커스성 유방염의 독성인자로서 중요시되고 있다. 본 연구에서는 S. uberis 네 가지 균주를 대상으로 LBP를 보다 효율적으로 추출하기 위하여 mutanolysin 및 sodium dodecyl sulfate(SDS)를 이용한 두 가지 다른 추출 방법을 사용하였다. 추출된 세균단백질을 SDS-polyacrylamide gel electrophoreis(SDS-PAGE)로 전기영동을 하였고, 겔을 니트로셀룰로스 막으로 이동시켰다. Rabbit anti-bovine lactoferrin 항체와 HRP-conjugated donkey anti-rabbit IgG 항체를 사용하여 LBP를 검출하였다. 이러한 웨스턴 블롯팅 분석을 통해 SDS 추출법이 mutanolysin 추출법에 비해 보다 효율적으로 110 kDa 및 112 kDa의 LBP를 추출할 수 있음을 증명하였다.

Sterol regulatory element-binding proteins involved in reprogramming of lipid droplet formation after rotavirus infection

  • Naveed, Ahsan;Baek, Yeong-Bin;Soliman, Mahmoud;Sharif, Muhammad;Park, Sang-Ik;Kang, Mun-Il
    • 한국동물위생학회지
    • /
    • 제44권4호
    • /
    • pp.195-207
    • /
    • 2021
  • Species A rotaviruses (RVAs) replicate and assemble their immature particles within electron dense compartments known as viroplasms, where lipid droplets (LDs) interact with the viroplasm and facilitate viral replication. Despite the importance of LD formation in the life cycle of RVAs, the upstream molecules modulating LD formation remain unclear. This study aimed to find out the role of sterol regulatory element-binding proteins (SREBPs) in reprogramming of LD formation after RVA infection. Here, we demonstrate that RVA infection reprograms the sterol regulatory element-binding proteins (SREBPs)-dependent lipogenic pathways in virus-infected cells, and that both SREBP-1 and -2 transactivated genes, which are involved in fatty acid and cholesterol biosynthesis, are essential for LD formation. Our results showed that pharmacological inhibition of SREBPs using AM580 and betulin and inhibition of their downstream cholesterol biosynthesis (simvastatin for HMG-CoA reductase) and fatty acid enzymes (TOFA) negatively modulated the intracellular triacylglycerides and cholesterol levels and their resulting LD and viroplasm formations. Interestingly, pharmacological inhibition of SREBPs significantly reduced RVA protein synthesis, genome replication and progeny production. This study identified SREBPs-mediated lipogenic reprogramming in RVA-infected host cells, which facilitates virus replication through LD formation and its interaction with viroplasms, suggesting that SREBPs can be a potential target for the development of efficient and affordable therapeutics against RVA infection.

Nucleotide and Deduced Amino Acid Sequences of Rat Myosin Binding Protein H (MyBP-H)

  • Jung, Jae-Hoon;Oh, Ji-Hyun;Lee, Kyung-Lim
    • Archives of Pharmacal Research
    • /
    • 제21권6호
    • /
    • pp.712-717
    • /
    • 1998
  • The complete nucleotide sequence of the cDNA clone encoding rat skeletal muscle myosin- binding protein H (MyBP-H) was determined and amino acid sequence was deduced from the nucleotide sequence (GenBank accession number AF077338). The full-length cDNA of 1782 base pairs(bp) contains a single open reading frame of 1454 bp encoding a rat MyBP-H protein of the predicted molecular mass 52.7kDa and includes the common consensus 1CA__TG' protein binding motif. The cDNA sequence of rat MyBP-H show 92%, 84% and 41% homology with those of mouse, human and chicken, respectively. The protein contains tandem internal motifs array (-FN III-Ig C2-FN III- Ig C2-) in the C-terminal region which resembles to the immunoglobulin superfamily C2 and fibronectin type III motifs. The amino acid sequence of the C-terminal Ig C2 was highly conserved among MyBPs family and other thick filament binding proteins, suggesting that the C-terminal Ig C2 might play an important role in its function. All proteins belonging to MyBP-H member contains `RKPS` sequence which is assumed to be cAMP- and cGMP-dependent protein kinase A phosphorylation site. Computer analysis of the primary sequence of rat MyBP-H predicted 11 protein kinase C (PKC)phosphorylation site, 7 casein kinase II (CK2) phosphorylation site and 4N-myristoylation site.

  • PDF

Mechanisms of Macromolecular Interactions Mediated by Protein Intrinsic Disorder

  • Hong, Sunghyun;Choi, Sangmin;Kim, Ryeonghyeon;Koh, Junseock
    • Molecules and Cells
    • /
    • 제43권11호
    • /
    • pp.899-908
    • /
    • 2020
  • Intrinsically disordered proteins or regions (IDPs or IDRs) are widespread in the eukaryotic proteome. Although lacking stable three-dimensional structures in the free forms, IDRs perform critical functions in various cellular processes. Accordingly, mutations and altered expression of IDRs are associated with many pathological conditions. Hence, it is of great importance to understand at the molecular level how IDRs interact with their binding partners. In particular, discovering the unique interaction features of IDRs originating from their dynamic nature may reveal uncharted regulatory mechanisms of specific biological processes. Here we discuss the mechanisms of the macromolecular interactions mediated by IDRs and present the relevant cellular processes including transcription, cell cycle progression, signaling, and nucleocytoplasmic transport. Of special interest is the multivalent binding nature of IDRs driving assembly of multicomponent macromolecular complexes. Integrating the previous theoretical and experimental investigations, we suggest that such IDR-driven multiprotein complexes can function as versatile allosteric switches to process diverse cellular signals. Finally, we discuss the future challenges and potential medical applications of the IDR research.