• Title/Summary/Keyword: binding energy

Search Result 777, Processing Time 0.029 seconds

Heterogeneity of hard skin layer in wrinkled PDMS surface fabricated by Ar ion beam irradiation (아르곤 이온빔 조사로 형성된 주름진 PDMS 표면 경화층의 이질성)

  • Lee, Seunghun;Byeon, Eunyeon;Kim, Do-Geun;Jung, Sunghoon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.43.1-43.1
    • /
    • 2018
  • Spatial distribution of binding state in depth direction is investigated in a hard skin layer on soft polydimethylsiloxane (PDMS) fabricated by Ar ion beam irradiations. The hard skin layer known as a silica-like homogenous layer was composed of two layers. Impinging Ar ions transfer energy to PDMS as a function of collisional energy transfer rate, which is the maximum at surface and decreases gradually as an ion penetrates. This formed the heterogeneous hard skin layer that consists of a top-most layer and an intermediate layer. XPS depth profiling showed the existence of the top-most layer and intermediate layer. In the top-most layer, scission and cross-linking were occurred simultaneously and Si-O bond showed dissociated status, SiOx (x = 1.25 - 1.5). Under the top-most layer, there was the intermediate layer in which cross-linking is mainly occurred and Si-O bond showed silica-like binding status, SiOx (x = 1.75 - 2). And theoretical analysis which calculates the collisional energy transfer and a displacement per atom explained the thickness variation of top-most layer according to Ar ion energy from 360 eV to 840 eV.

  • PDF

Computational Study of 3-Aminophenol·(CO2)1 Cluster: CO2 Capture Ability of 3-Aminophenol

  • Sohn, Woon-Yong;Kim, Min-Ho;Kim, Sang-Su;Kang, Hyuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2806-2808
    • /
    • 2010
  • The structure of 3-aminophenol $(CO_2)_1$ cluster was computationally studied both in the ground and the lowest singlet excited electronic states. The ground state structure and binding energy of the cluster was investigated using the second-order M$\ddoot{o}$ller-Plesset perturbation theory (MP2) at the complete basis set (CBS) limit. The excited state geometry of the cluster was obtained at the second-order approximate coupled cluster (CC2) level with cc-pVDZ basis set, and the $S_0-S_1$ absorption spectrum was simulated by calculating Franck-Condon overlap integral. The ground state geometry of the global minimum with a very high binding energy of 4.3 kcal/mol was found for the cluster, due to the interaction between amino group and $CO_2$ in addition to the strong $\pi-\pi$ interaction between the aromatic ring and $CO_2$. The excited state geometry shows a very big shift in the position of $CO_2$ compared to the ground state geometry, which results in low intensity and broad envelope in the Franck-Condon simulation.

Influence of Alkali Metal Cation Type on Ionization Characteristics of Carbohydrates in ESI-MS

  • Choi, Sung-Seen;Kim, Jong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1996-2000
    • /
    • 2009
  • Alkali metal salts were introduced to enhance the ionization efficiency of glucose and maltooligoses in electrospray ionization-mass spectrometry (ESI-MS). A mixture of the same moles of glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose was used. Salts of lithium, sodium, potassium, and cesium were employed as the cationizing agent. The ionization efficiency varied with the alkali metal cation types as well as the analyte sizes. Ion abundance distribution of the [M+$cation]^+$ ions of the carbohydrates varied with the fragmentor voltage. The maximum ion abundance at low fragmentor voltage was observed at maltose, while the maximum ion abundance at high fragmentor voltage shifted to maltotriose or maltotetraose for Na, K, and Cs. Variation of the ionization efficiency was explained with the hydrated cation size and the binding energy of the analyte and alkali metal cation.

Electrochemical Properties of Laves Phase Zr-V System Hydrogen Absorbing Alloys (Zr-V계 Laves상 수소저장합금의 전기화학적 성질)

  • Park, Chan-kyo;Cho, Tae-hwan
    • Journal of Hydrogen and New Energy
    • /
    • v.8 no.2
    • /
    • pp.51-56
    • /
    • 1997
  • The Zr-based Laves phase, $ZrV_2$ hydrogen storage alloy is not suited for the electrode of Ni-MH battery, because the binding strength of that with hydrogen is too strong although the storage capacity is high. For an application to electrode a part of V in alloys is substituted with Ni to make weaken the binding strength. The electrochemical and thermodynamic properties of Zr-V-Ni system alloys are investigated from the equilibrium potential and studied the possibility for the application to the rechargeable battery electrode.

  • PDF

Binding energy study from photocurrent signal inphotoconductive a $ZnIn_2S_4$ thin films

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.380-380
    • /
    • 2010
  • The chalcopyrite $ZnIn_2S_4$ epilayers were grown on the GaAs substrate by using a hot-wall epitaxy (HWE) method. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnIn_2S_4$ have been estimated to be 0.1541 eV and 0.0129 eV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the $\Gamma_5$ states of the valence band of the $ZnIn_2S_4$/GaAs epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-}$, $B_{1^-}$, and $C_1$-exciton peaks for n = 1. Also, we obtained the $A_{\infty^-}$ and B-exciton peaks from the PC spectrum at 293 K.

  • PDF

Conformational Dynamics of Heme Pocket in Myoglobin and Hemoglobin

  • Kim, Seong-Heun;Heo, Jeong-Hee;Lim, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.151-156
    • /
    • 2005
  • The conformational dynamics of heme pocket, a small vacant site near the binding site of heme proteins -myoglobin (Mb) and hemoglobin (Hb), was investigated after photolysis of carbon monoxide from MbCO and HbCO in D$_2$O solution at 283 K by probing time-resolved vibrational spectra of photolyzed CO. Two absorption bands, arising from CO in the heme pocket, evolve nonexponentially in time. The band at higher energy side blue shifts and broadens with time and the one at lower energy side narrows significantly with a negligible shift. These spectral evolutions are induced by protein conformational changes following photolysis that modify structure and electric field of heme pocket, and ligand dynamics in it. The conformational changes affecting the spectrum of photolyzed CO in heme pocket likely modulates ligand-binding activity.

Low-energy band structure very sensitive to the interlayer distance in Bernal-stacked tetralayer graphene

  • Lee, Kyu Won;Lee, Cheol Eui
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1393-1398
    • /
    • 2018
  • We have investigated Bernal-stacked tetralayer graphene as a function of interlayer distance and perpendicular electric field by using density functional theory calculations. The low-energy band structure was found to be very sensitive to the interlayer distance, undergoing a metal-insulator transition. It can be attributed to the nearest-layer coupling that is more sensitive to the interlayer distance than are the next-nearest-layer couplings. Under a perpendicular electric field above a critical field, six electric-field-induced Dirac cones with mass gaps predicted in tight-binding models were confirmed, however, our density functional theory calculations demonstrate a phase transition to a quantum valley Hall insulator, contrasting to the tight-binding model prediction of an ordinary insulator.

Targeting of integrin αvβ3 with different sequence of RGD peptides: A molecular dynamics simulation study

  • Azadeh Kordzadeh;Hassan Bardania;Esmaeil Behmard;Amin Hadi
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.105-111
    • /
    • 2023
  • Integrin αvβ3 is one of the receptors expressed in cancer cells. RGD peptides have the potential to target integrin αvβ3 (receptor), which can increase drug delivery efficiency. In this study, 55 different RGD dimer motifs were investigated. At first, the binding energy between RGD peptides and the receptor was calculated using molecular docking. Then, three RGD peptides with the strongest binding energy with the receptor were selected, and their dynamic adsorption on the receptor was simulated by molecular dynamics (MD). The obtained results showed that a sequence that has RGD at the beginning and end with tryptophan (TRP) has strong Lennard-Jones (LJ) and electrostatic interactions with Integrin αvβ3 and has changed the conformation of receptor significantly, which analyzed by root mean square deviation (RMSD) and radius of gyration.

Identification of Oligosaccharides in Human Milk Bound onto the Toxin A Carbohydrate Binding Site of Clostridium difficile

  • Nguyen, Thi Thanh Hanh;Kim, Jong Woon;Park, Jun-Seong;Hwang, Kyeong Hwan;Jang, Tae-Su;Kim, Chun-Hyung;Kim, Doman
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.659-665
    • /
    • 2016
  • The oligosaccharides in human milk constitute a major innate immunological mechanism by which breastfed infants gain protection against infectious diarrhea. Clostridium difficile is the most important cause of nosocomial diarrhea, and the C-terminus of toxin A with its carbohydrate binding site, TcdA-f2, demonstrates specific abolishment of cytotoxicity and receptor binding activity upon diethylpyrocarbonate modification of the histidine residues in TcdA. TcdA-f2 was cloned and expressed in E. coli BL21 (DE3). A human milk oligosaccharide (HMO) mixture displayed binding with TcdA-f2 at 38.2 respond units (RU) at the concentration of 20 μg/ml, whereas the eight purified HMOs showed binding with the carbohydrate binding site of TcdA-f2 at 3.3 to 14 RU depending on their structures via a surface plasma resonance biosensor. Among them, Lacto-N-fucopentaose V (LNFPV) and Lacto-N-neohexaose (LNnH) demonstrated tight binding to TcdA-f2 with docking energy of −9.48 kcal/mol and −12.81 kcal/mol, respectively. It displayed numerous hydrogen bonding and hydrophobic interactions with amino acid residues of TcdA-f2.

The Study on $Na^+-Ca^{++}$ Exchange in Heart Mitochondria (심근 Mitochondria의 $Na^+-Ca^{++}$교환에 관한 연구)

  • Shin, Sang-Goo;Kim, Myung-Suk;Lim, Jung-Kyoo
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.89-102
    • /
    • 1982
  • The $Na^+-and\;K^+-induced\;Ca^{++}$ release was measured isotopically by millipore filter technique in pig heart mitochondria. With EGTA-quenching technique, the characteristics of mitochondrial $Ca^{++}-pool$ and the sources of $Ca^{++}$ released from mitochondria by $Na^+\;or\;K^+$ were analyzed. The mitochondrial $Ca^{++}-pool$ could be distinctly divided into two components: internal and external ones which were represented either by uptake through inner membrane, or by energy independent passive binding to external surface of mitochondria, respectively. In energized mitochondria, a large portion of $Ca^{++}$was transported into internal pool with little external binding, while in de-enerigzed state, a large portion of transported $Ca^{++}$ existed in the external pool with limited amount of $Ca^{++}$ in the internal pool which was possibly transported through the $Ca^{++}-carrier$ present in the inner membrane. $Na^+$ induced the $Ca^{++}$ release from both internal pool and external pool and external binding pool of mitochondria. In contrast, $K^+$ did not affect $Ca^{++}$ of the internal pool, but, displaced $Ca^{++}$ bound to external surface of the mitochondria. When the $Ca^{++}-reuptake$ was blocked by EGTA, the $Ca^{++}$ release from the internal pool by $Na^+$ was rapid; the rate of $Ca^{++}-efflux$ appeared to be a function of $[Na^+]^2$ and about 8mM $Na^+$ was required to elicit half-maximal velocity of $Ca^{++}-efflux$. So it was revealed that $Ca^{++}-efflux$ velocity was particulary sensitive to small changes of the $Na^+$ concentration in physiological range. Energy independent $Ca^{++}-binding$ sites of mitochondrial external surface showed unique characteristics. The total number of external $Ca^{++}-binding$ sites of pig heart mitochondria was 29 nmoles per mg protein and the dissociation constant(Kd) was $34{\mu}M$. The $Ca^{++}-binding$ to the external sites seemed to be competitively inhibited by $Na^+\;and\;K^+$; the inhibition constant(Ki) were 9.7 mM and 7.1 mM respectively. Considering the intracellular ion concentrations and large proportion of $Ca^{++}$ uptake in energized mitochondria, the external $Ca^{++}-binding$ pool of the mitochondria did not seem to play a significant role on the regulation of intracellular free $Ca^{++}$ concentration. From this experiment, it was suggested that a small change of intracellular free $Na^+$ concentration might play a role on regulation of free $Ca^{++}$ concentration in cardiac cell by influencing $Ca^{++}-efflux$ from the internal pool of mitochondria.

  • PDF