• Title/Summary/Keyword: binding activity

Search Result 2,104, Processing Time 0.035 seconds

Characterization of Alanine Scanning Mutants of a Peptide Specifically Binding to $TiO_{2}$ Nanoparticles ($TiO_{2}$ Nanoparticle에 특이적으로 결합하는 Peptide의 Alanine Scanning Mutant의 성질에 관한 연구)

  • Seo, Min-Hee;Chael, Hee-Kwon;Myung, Heejoon
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.319-321
    • /
    • 2005
  • We have previously reported the isolation and characterization of peptides binding to $TiO_{2}$ nanoparticles from phage display peptide libraries. One of the peptides (PEP9) was selected and mutant peptide-displaying phages were produced by alanine scanning mutagenesis. The mutant phages were subjected to binding analysis to $TiO_{2}$ nanoparticles. When the proline at residue 4 was substituted by alanine, the binding activity was reduced to $10\%$ of that of wild type PEP9. Substitution of valine at residue 2, serine at residue 3, and isoleucine at residue 5 also decreased the binding to $40\%$. Based on these observations, we concluded that the three dimensional structure generated by residues 2-5 was the critical factor for the binding between PEP9 and the nanoparticle.

Synthesis of Substituted Cinnamoyl-tyramine Derivatives and their platelet Anti-aggregatory Activities

  • Woo, Nam-Tae;Jin, Sun-Yong;Cho, Jin-Cho;Kim, Nam-Sun;Bae, Bae-Eun-Hyung;Han, Ducky;Han, Byung-Hoon;Kang, Young-Hwa
    • Archives of Pharmacal Research
    • /
    • v.20 no.1
    • /
    • pp.80-84
    • /
    • 1997
  • Substituted cinnamoyl-tyramine derivatives were synthesized by DCC-coupling of substituted cinnamic acid with tyramine or tyramine methyl-1-ether to evaluate PAF-receptor binding antagonistic activities and inhibitory activities on PAF-induced platelet aggregation with interest on structure-activity relations. The results show that 3,4-dimethoxy-cinnamoyl tyramine-amide or its methyl ether have significant PAF-receptor binding antagonistic activity and platelet anti-aggregatory activities.

  • PDF

Potentiometric Homogeneous Enzyme-Linked Binding Assays for Riboflavin and Riboflavin Binding Protein

  • 김진목;김혜진;김미정;이동주;한상현;차근식
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.11
    • /
    • pp.1018-1022
    • /
    • 1996
  • Adenosine deaminase (ADA) has been utilized as the label in devising a potentiometric homogeneous assay for riboflavin and riboflavin binding protein (RBP). The proposed homogeneous assay method employs an ADA-biotin conjugate as the signal generator and an avidin-riboflavin conjugate as the signal modulator in the solution phase. The catalytic activity of the ADA-biotin conjugate is inhibited in the presence of an excess amount of the avidin-riboflavin conjugate, and the observed inhibition is reversed in an amount proportional to the concentration of RBP added. When the analyte riboflavin is added to this mixture of ADA-biotin, avidin-riboflavin and RBP, the activity of the enzyme conjugate is re-inhibited in an amount proportional to the concentration of riboflavin. Since the enzyme label used in this system is ADA, an ammonia-producing enzyme, a potentiometric rather than photometric detection scheme is used to monitor the enzymatic activity in the assay.

Effects of Pertussis Toxin on Macrophage Activation

  • Lim, Suck-Ihn;An, Nyeon-Hyoung
    • Archives of Pharmacal Research
    • /
    • v.15 no.2
    • /
    • pp.146-151
    • /
    • 1992
  • The aim of this study was to evaluate capability of pertussis toxin (PT) to active mouse macrophages. The investigations were undertaken to determine whether the role played by this toxin required the A-protomer of the toxin to ADP-ribosylate a guanine nucleotide binding protein (a class I activity) or was dependent on the binding of B-oligomer of the toxin to the surface of target cells (a Class II activity). The results of these experiments have established that the mechanism of macrophage activation with PT seems to be dependent upon a Class II activity of the toxin.

  • PDF

New Alternative Splicing Isoform and Identification of the Kinase Activity of N-Terminal Kinase-Like Protein (NTKL)

  • Merlin, Jayalal L.P.
    • Journal of Integrative Natural Science
    • /
    • v.6 no.4
    • /
    • pp.234-243
    • /
    • 2013
  • N-terminal kinase-like (NTKL) protein was initially identified as a protein binding to protein kinase B (PKB, also known as Akt). Though NTKL-BP1 (NTKL-binding protein 1) has been identified as an NTKL binding protein, its functions related to binding have not yet been elucidated. Here, a new alternative spliced variant of NTKL and its association with integrin ${\beta}1$ is described, in addition to the kinase activity of NTKL and its substrate candidates. Although the phosphorylation of the candidates must be further confirmed using other experimental methods, the observation that NTKL can phosphorylate ROCK1, DYRK3, and MST1 indicates that NTKL may act as a signaling protein to regulate actin assembly, cell migration, cell growth, and to facilitate differentiation and development in an integrin-associated manner.

A Point Mutation at the C-Terminal Half of the Repressor of Temperate Mycobacteriophage L1 Affects Its Binding to the Operator DNA

  • Ganguly, Tridib;Chattoraj, Partho;Das, Malabika;Chanda, Palas K.;Mandal, Nitai.C.;Lee, Chia Y.;Sau, Subrata
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.709-714
    • /
    • 2004
  • The wild-type repressor CI of temperate mycobacteriophage L1 and the temperature-sensitive (ts) repressor CIts391 of a mutant L1 phage, L1cIts391, have been separately overexpressed in E. coli. Both these repressors were observed to specifically bind with the same cognate operator DNA. The operator-binding activity of CIts391 was shown to differ significantly than that of the CI at 32 to $42^{\circ}C$. While 40-95% operator-binding activity was shown to be retained at 35 to $42^{\circ}C$ in CI, more than 75% operator-binding activity was lost in CIts391 at 35 to $38^{\circ}C$, although the latter showed only 10% less binding compared to that of the former at $32^{\circ}C$. The CIts391 showed almost no binding at $42^{\circ}C$. An in vivo study showed that the CI repressor inhibited the growth of a clear plaque former mutant of the L1 phage more strongly than that of the CIts391 repressor at both 32 and $42^{\circ}C$. The half-life of the CIts391-operator complex was found to be about 8 times less than that of the CI-operator complex at $32^{\circ}C$. Interestingly, the repressor-operator complexes preformed at $0^{\circ}C$ have shown varying degrees of resistance to dissociation at the temperatures which inhibit the formation of these complexes are inhibited. The CI repressor, but not that of CIts391, regains most of the DNA-binding activity on cooling to $32^{\circ}C$ after preincubation at 42 to $52^{\circ}C$. All these data suggest that the 131st proline residue at the C-terminal half of CI, which changed to leucine in the CIts391, plays a crucial role in binding the L1 repressor to the cognate operator DNA, although the helix-turn-helix DNA-binding motif of the L1 repressor is located at its N-terminal end.

The Improved Antigen-binding Activity of Biosimilar Remicade ScFv Antibodies by Fusion of the Leucine Zipper Domain (Leucine zipper도메인의 융합에 의한 바이오시밀러 레미케이드 Single-chain Fv 항체의 항원 결합력 개선)

  • Kim, Jin-Kyoo;Kim, Tae Hwan
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.1012-1020
    • /
    • 2020
  • Remicade is a therapeutic biosimilar natural antibody in which the mouse variable domain has been linked to the human constant domain. It is a chimeric monoclonal antibody specific to tumor necrosis factor-alpha (TNF-α) and has been developed for the treatment of rheumatoid arthritis. To investigate the biological activity of the Remicade antibody, we carried out a bioinformatics study using a protein data bank to characterize the TNF-α antigen binding mechanism of the Remicade natural antibody. Because the production of the Remicade antibody is often limited by genetic instability of the natural antibody-producing cell, we generated a Remicade single-chain variable domain fragment antibody (Remicade) in which a heavy chain variable domain (VH) is joined with a light chain variable domain (VL) by a polypeptide linker. Furthermore, Remicade was fused to a leucine zipper (RemicadeScZip) for higher production and higher antigen-binding activity than Remicade. The Remicade and Remicade ScZip were expressed in Escherichia coli and purified by a Ni+-NTA-agarose column. As expected, the purified proteins had migrated as 28.80 kDa and 33.96 kDa in sodium dodecyl sulfate-polyacrylamide electrophoresis. The TNF-α antigen binding activity of Remicade was not observed by ELISA and western blot. In contrast, RemicadeScZip showed antigen-binding activity. Additional bio-layer interferometry analysis confirmed the antigen-binding activity of RemicadeScZip, suggesting that the leucine zipper stabilized the folding of RemicadeScZip in a denatured condition and improved the TNF-α antigenbinding activity.

Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms

  • Joung, Hye-Young;Kang, Young Mi;Lee, Bae-Jin;Chung, Sun Yong;Kim, Kyung-Soo;Shim, Insop
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.479-485
    • /
    • 2015
  • This study was performed to investigate the sedative-hypnotic activity of ${\gamma}$-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the $GABA_A$-benzodiazepine and 5-$HT_{2C}$ receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In $GABA_A$ and 5-$HT_{2C}$ receptor binding assays, FST displayed an effective concentration-dependent binding affinity to $GABA_A$ receptor, similar to the binding affinity to 5-$HT_{2C}$ receptor. FO exhibited higher affinity to 5-$HT_{2C}$ receptor, compared with the $GABA_A$ receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedativehypnotic activity possibly by modulating $GABA_A$ and 5-$HT_{2C}$ receptors. We propose that FST and FO might be effective agents for treatment of insomnia.

Binding Model of Fisetin and Human c-Jun NH2-Terminal Kinase 1 and Its Anti-inflammatory Activity

  • Jnawali, Hum Nath;Lee, Eunjung;Jeong, Ki-Woong;Heo, Yong-Seok;Kim, Yangmee
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2629-2634
    • /
    • 2013
  • Fisetin is a naturally occurring flavonoid with some anti-cancer and anti-inflammation capabilities. In this study, we perform docking studies between human c-Jun N-terminal kinase 1 (JNK 1) and fisetin and proposed a binding model of fisetin and JNK 1, in which the hydroxyl groups of the B ring and oxygen at the 4-position of the C ring play key roles in binding interactions with JNK. Fluorescence quenching and saturation-transfer difference (STD) NMR experiments showed that fisetin exhibits good binding affinity to JNK, $1.32{\times}10^8M^{-1}$. The anti-inflammatory activity of fisetin was also investigated. Fisetin significantly suppressed tumor necrosis factor, the NO production, and macrophage inflammatory cytokine release in LPS-stimulated RAW264.7 mouse macrophages. We found that the anti-inflammatory cascade of fisetin was mediated through the JNK, and cyclooxygenase (COX)-2 pathways. Our findings suggest the potential of fisetin as an anti-inflammatory agent.

Stability Analysis of Bacillus stearothermopilus L1 Lipase Fused with a Cellulose-binding Domain

  • Hwang Sangpill;Ahn Ik-Sung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.329-333
    • /
    • 2005
  • This study was designed to investigate the stability of a lipase fused with a cellulose­binding domain (CBD) to cellulase. The fusion protein was derived from a gene cluster of a CBD fragment of a cellulase gene in Trichoderma hazianum and a lipase gene in Bacillus stearother­mophilus L1. Due to the CBD, this lipase can be immobilized to a cellulose material. Factors affecting the lipase stability were divided into the reaction-independent factors (RIF), and the re­action-dependent factors (RDF). RIF includes the reaction conditions such as pH and tempera­ture, whereas substrate limitation and product inhibition are examples of RDF. As pH 10 and $50^{\circ}C$ were found to be optimum reaction conditions for oil hydrolysis by this lipase, the stability of the free and the immobilized lipase was studied under these conditions. Avicel (microcrystal­line cellulose) was used as a support for lipase immobilization. The effects of both RIF and RDF on the enzyme activity were less for the immobilized lipase than for the free lipase. Due to the irreversible binding of CBD to Avicel and the high stability of the immobilized lipase, the enzyme activity after five times of use was over $70\%$ of the initial activity.