• Title/Summary/Keyword: binding activity

Search Result 2,137, Processing Time 0.032 seconds

The Regulation of AP-1 DNA Binding Activity by Long-term Nicotine Stimulation in Bovine Adrenal Medullary Chromaffin Cells: Role of Second Messengers

  • Lee, Jin-Koo;Choi, Seong-Soo;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.2
    • /
    • pp.109-112
    • /
    • 2002
  • The signal pathways involved in the regulation of AP-1 DNA binding activity in long-term nicotine stimulated bovine adrenal medullary chromaffin (BAMC) cells have not been well characterized. To understand the involvement of second messengers in the regulation of AP-1 DNA binding activity, the present study was designed to define the time-course for inhibition of nicotine-induced responses by cholinergic antagonists, $Ca^{2+}$ and calmodulin (CaM) antagonists, and calcium/calmodulin-dependent protein kinase (CaMK) II inhibitor using electrophoretic mobility shift assay. Nicotine $(10{\mu}M)$ stimulation increased AP-1 DNA binding activity at 24 hr after treatment. Posttreatment with hexamethonium (1 mM) plus atropine $(1{\mu}M)$ (HA), nimodipine $(1{\mu}M),$ or calmidazolium $(1{\mu}M)$ at 0.5, 3, and 6 hr after the nicotine treatment significantly inhibited the AP-1 DNA binding activity increased by long-term nicotine stimulation. However, posttreatment with HA, nimodipine, or calmidazolium at 9 or 12 hr after the nicotine treatment did not affect the nicotine-induced increase of AP-1 DNA binding activity. The pretreatment of BAMC cells with various concentrations of KN-62 inhibited the increase of AP-1 DNA binding activity induced by nicotine in a concentration-dependent manner. KN-62 $(10{\mu}M)$ posttreatment beginning at 0.5, 3, or 6 hr after the nicotine treatment significantly inhibited the increase of AP-1 DNA binding activity. However, KN-62 posttreatment beginning at 9 or 12 hr after the nicotine treatment did not affect the increase of AP-1 DNA binding activity. This study suggested that stimulation (for at least 6 hr) of nicotinic receptors on BAMC cells was necessary for increase of AP-1 DNA binding activity, and activation of $Ca^{2+},$ CaM, and CaMK II up to 6 hr at least seemed to be required for the increase of nicotine-induced AP-1 DNA binding activity.

Characterization of the Binding Activity of Virginiae Butanolide C Binding Protein in Streptomyces virginiae (Streptomyces virginiae가 생산하는 Virginiae Butanolide C(VB-C) 결합단백질의 결합활성에 미치는 일반적 특성)

  • 김현수
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.257-262
    • /
    • 1992
  • Virginiae butanolide (VB) is an autoregulator which triggers virginiamycin production in Strefltomyces virginiae. VB-C binding protein activity was investigated under various additives. The VB-C binding protein was almost fully observed in sotubte fraction (>90%) and the binding activity was optimum at pH 7.0. The VB-C binding activity was increased about 15% in 0.5 M KCI, whereas decreased about 60% in 20 mM $Mo^{6+}$. Chelating reagents (ethylenediarnine tetraacetic acid, ethyleneglycol bis(2-aminoethylether) tetraacetic acid, 8-hydroxyquinoline) and SH protecting reagents (rnercaptoethanol, dithiothreitol, thioglycerol) inhibited the VB-C binding activity about 30~55% and 3~20%, respectively. Serine protease inhibitor (phenyl methane sulfonyl fluoride), nucleotides (guanosine 5'-monophosphate, adenosine 3',5'-cyclic monophosphate), and phosphatases (alkaline, acid phosphatase) increased the VB-C binding activity about 17%, 6~20%, and 4- 13%, respectively.

  • PDF

Cloning of the Large Subunit of Replication Protein A (RPA) from Yeast Saccharomyces cerevisiae and Its DNA Binding Activity through Redox Potential

  • Jeong, Haeng-Soon;Jeong, In-Chel;Kim, Andre;Kang, Shin-Won;Kang, Ho-Sung;Kim, Yung-Jin;Lee, Suk-Hee;Park, Jang-Su
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.194-198
    • /
    • 2002
  • Eukaryotic replication protein A (RPA) is a single-stranded(ss) DNA binding protein with multiple functions in DNA replication, repair, and genetic recombination. The 70-kDa subunit of eukaryotic RPA contains a conserved four cysteine-type zinc-finger motif that has been implicated in the regulation of DNA replication and repair. Recently, we described a novel function for the zinc-finger motif in the regulation of human RPA's ssDNA binding activity through reduction-oxidation (redox). Here, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its RPA32 and/or RPA14 subunits. Yeast RPA requires a reducing agent, such as dithiothreitol (DTT), for its ssDNA binding activity. Also, under non-reducing conditions, its DNA binding activity decreases 20 fold. In contrast, the RPA 70 subunit does not require DTT for its DNA binding activity and is not affected by the redox condition. These results suggest that all three subunits are required for the regulation of RPA's DNA binding activity through redox potential.

An Influence of Pretreatment Conditions on Mutagen Binding of Lactobacillus paracasei subsp. tolerans JG22 against MNNG and 2-NF

  • Lim, Sung-Mee
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.3
    • /
    • pp.147-156
    • /
    • 2013
  • The objectives of this study were to investigate the effect of Lactobacillus paracasei subsp. tolerans JG22 isolated from pepper leaf jangajji on the mutagenic activity of N-methyl, N'-nitro, N-nitrosoguanidine (MNNG) and 2-nitrofluene (2-NF) and to evaluate the effect of physico-chemical pretreatment on the antimutagenic activity of the strain. The viable cells of JG22 strain displayed a significantly high (p <0.05) antimutagenic activity against both mutagens tested. The antimutagenic effect of JG22 strain seems to be positively correlated with the amounts of the cells in the incubation time. This strain produced the antimutagenic activity of the maximum levels after preincubation for 30 min. The binding of this strain against the mutagenic compounds might be mainly present in the cell wall fraction rather than the cytosol fraction. Pretreatment with proteolytic enzymes and simulated gastric and intestinal juices and at different pH values had no significant effect on two mutagens removal by the viable cells. However, the binding activity of the mutagen by the strain seems to be affected by heating, enzymes including $\alpha$-amylase and lysozyme, divalent ions, and sodium metaperiodate. Thus, carbohydrates consisting of the cell walls may be important elements responsible for the binding of MNNG and 2-NF by this strain. In conclusion, the binding of the mutagens to cells of JG 22 strain may play a vital role in suppressing the process of mutagenesis induced by mutagens.

Antibacterial Activity of Essential Oils on the Growth of Staphylococcus aureus and Measurement of their Binding Interaction Using Optical Biosensor

  • Chung, Kyong-Hwan;Yang, Ki-Sook;Kim, Jin;Kim, Jin-Chul;Lee, Ki-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1848-1855
    • /
    • 2007
  • Antibacterial activity of essential oils (Tea tree, Chamomile, Eucalyptus) on Staphylococcus aureus growth was evaluated as well as the essential oil-loaded alginate beads. The binding interactions between the cell and the essential oils were measured using an optical biosensor. The antibacterial activity of the essential oils to the cell was evaluated with their binding interaction and affinity. The antibacterial activity appeared in the order of Tea Tree>Chamomile>Eucalyptus, in comparison of the inhibition effects of the cell growth to the essential oils. The association rate constant and affinity of the cell binding on Tea Tree essential oil were $5.0{\times}10^{-13}\;ml/(CFU{\cdot}s)$ and $5.0{\times}10^5\;ml/CFU$, respectively. The affinity of the cell binding on Tea Tree was about twice higher than those on the other essential oils. It might be possible that an effective antibacterial activity of Tea Tree essential oil was derived from its strong adhesive ability to the cell, more so than those of the other essential oils.

Analysis of the Involvement of Chitin-Binding Domain of ChiCW in Antifungal Activity, and Engineering a Novel Chimeric Chitinase with High Enzyme and Antifungal Activities

  • Huang, Chien-Jui;Guo, Shu-Huei;Chung, Shu-Chun;Lin, Yu-Ju;Chen, Chao-Ying
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1169-1175
    • /
    • 2009
  • An antifungal chitinase, ChiCW, produced by Bacillus cereus 28-9 is effective against conidial germination of Botrytis elliptica, the causal agent of lily leaf blight. ChiCW as a modular enzyme consists of a signal peptide, a catalytic domain, a fibronectin type-III-like domain, and a chitin-binding domain. When two C-terminal domains of ChiCW were truncated, $ChiCW{\Delta}FC$ (lacking the chitin-binding domain and fibronectin type III-like domain) lost its antifungal activity. Since $ChiCW{\Delta}C$ (lacking the chitin-binding domain) could not be expressed in Escherichia coli as $ChiCW{\Delta}FC$ did, a different strategy based on protein engineering technology was designed to investigate the involvement of the chitin-binding domain of ChiCW ($ChBD_{ChiCW}$) in antifungal activity in this study. Because ChiA1 of Bacillus circulans WL-12 is a modular enzyme with a higher hydrolytic activity than ChiCW but not inhibitory to conidial germination of Bo. elliptica and the similar domain composition of ChiA1 and ChiCW, the C-terminal truncated derivatives of ChiA1 were generated and used to construct chimeric chitinases with $ChBD_{ChiCW}$. When the chitin-binding domain of ChiA1 was replaced with $ChBD_{ChiCW}$, the chimeric chitinase named ChiAAAW exhibited both high enzyme activity and antifungal activity. The results indicate that $ChBD_{ChiCW}$ may play an important role in the antifungal activity of ChiCW.

The Soluble Expression of the Human Renin Binding Protein Using Fusion Partners: A Comparison of ubquitin, Thioredoxin, Maltose Binding Protein-and NusA

  • Lee, Chung;Lee, Sun-Gu;Saori Takahashi;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.89-93
    • /
    • 2003
  • human renin binding protein (hRnBp), showing N-acetylglucosamine-2-epimerase activity, was over-expressed in E. coli, but was mainly present as an inclusion body. To improve its solubility and activity, ubiquitin (Ub), thioredoxin (Trx), maltose binding protein (MBP) and NusA, were used as fusion partners. The comparative solubilities of the fusion proteins were, from most to least soluble: NusA, MBP, Trx, Ub. Only the MBP fusion did not significantly reduce the activity of hRnBp, but enhanced the stability. The Origami (DE3), permitting a more oxidative environment for the cytoplasm in E. coli; helped to increase its functional activity.

Effect of Ginseng Saponin on the Activity, Phosphorylation, $[^3H]$Ouabain Binding of Purified$Na^+$ $K^+$-ATPase Isolated from the Outer Medulla of Sheep Kidney (인삼 Saponin이 양신장에서 정제한 $Na^+$ $K^+$-ATPase의 활성, 인산화 및 $[^3H]$Ouabain결합에 미치는 영향)

  • 이신웅;이정수;진갑덕
    • YAKHAK HOEJI
    • /
    • v.29 no.2
    • /
    • pp.76-89
    • /
    • 1985
  • The effects of ginseng saponin on the activity, phosphorylation, [$^{3}$H] ouabain binding and light scattering (disruption) of purified $Na^{+}$ ,$K^{+}$ -ATPase isolated from the outer medulla of sheep kidney were compared to those of gypsophila saponin, sodium dodecylsulfate (SDS), and Triton X-100 on the same parameters. $Na^{+}$ , $K^{+}$ -ATPase activity, phosphorylation, and [$^{3}H$] ouabain binding were inhibited by ginseng saponin (triol>total>diol), SDS, or Triton X-100, but increased by gypsophila saponin. Low doses of ginseng saponin (3.mu.g saponin/.mu.g protein) decreased phosphorylation sites and ouabain binding site concentration (Bmax) without any change of turnover number and affinity for ouabain binding which were decreased by high dose of ginseng saponin (over 10.mu.g saponin/.mu.g protein), SDS or Triton X-100. On the other hand, gypsophila saponin increased the affinity without any change of Bmax for ouabain binding. Inhibition of $Na^{+}$ ,$K^{+}$ -ATPase activity by ginseng saponin and SDS or Triton X-100 appeared before and after decrease in light scattering, respectively. These data suggest that ginseng saponins (total, diol, triol saponin) inhibit $Na^{+}$ , $K^{+}$ -ATPase activity by specific direct and general detergent action at low and high concentrations, respectively, and this inhibitory action of ginseng sapornin to $Na^{+}$ , $K^{+}$ -ATPase is not general action of all saponins.

  • PDF

Temperature-dependent DNA binding of DicA protein in vivo and in vitro (In vivo와 in vitro에서 DicA 단백질의 온도 의존적 DNA 결합)

  • Lee, Yonho;Yun, Sang Hoon;Lim, Heon M.
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.181-190
    • /
    • 2019
  • In Escherichia coli, DicA protein is involved in cell division control. DicA protein is known to bind DNA better at $25^{\circ}C$ than at $37^{\circ}C$. However, the molecular cause of the temperature dependent binding is not clear. In this study, we investigated how DicA binds DNA and why its DNA binding activity depends on temperature. An unique in vivo DNA binding assay developed in this laboratory showed that unlike the homologous proteins such as RovA or SlyA, DicA uses its N-terminal domain for DNA binding. The in vivo DNA binding assay of DicA also demonstrated that the temperature-dependent DNA binding activity does not come from Cnu or H-NS that is known to bind DNA better at $25^{\circ}C$ than at $37^{\circ}C$. Electrophoretic Mobility Shift Assay (EMSA), when performed with purified DicA protein, did not show temperature-dependent DicA binding activity. However when EMSA was performed with crude protein from WT E. coli cells, temperature-dependent DicA binding activity was observed, suggesting that there is a factor(s) that confers temperature DNA binding activity of DicA in vivo.

Expression of an Angiogenin Binding Peptide and Its Anti-Angiogenic Activity

  • Choi, Suk-Jung;Ahn, Mi-Won;Yoon, Kyoung-Bum;Park, Jong-Won
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.427-431
    • /
    • 1998
  • In the previous report (Choi et al., 1997), the angiogenin binding peptides identified from a phage-peptide library were analyzed by using the fusion proteins composed of the Escherichia coli maltose binding protein and its corresponding peptides. However, it was difficult to obtain a sufficient amount of the fusion proteins required for further analysis because of the low expression level. We now report a high level expression of the fusion protein and analysis of its anti-angiogenin activity. The use of strong T7 promoter and removal of signal sequence allowed about a 20-fold increase in the expression efficiency of the fusion protein. We were able to obtain about 10 mg of purified fusion protein from one liter of culture. The purified fusion protein showed angiogenin-specific affinity and inhibited the binding of biotinylated actin to human angiogenin at $IC_{50}$ of 0.6 mM. Its anti-angiogenin activity was also revealed by the chorioallantoic membrane assay.

  • PDF