• Title/Summary/Keyword: binary noise

Search Result 323, Processing Time 0.028 seconds

Analysis of Dynamical State Transition and Effects of Chaotic Signal in Continuous-Time Cyclic Neural Network (리미트사이클을 발생하는 연속시간 모델 순환결합형 신경회로망에서 카오스 신호의 영향)

  • Park Cheol-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.396-401
    • /
    • 2006
  • It is well-known that a neural network with cyclic connections generates plural limit cycles, thus, being used as a memory system for storing large number of dynamic information. In this paper, a continuous-time cyclic connection neural network was built so that each neuron is connected only to its nearest neurons with binary synaptic weights of ${\pm}1$. The type and the number of limit cycles generated by such network has also been demonstrated through simulation. In particular, the effect of chaos signal for transition between limit cycles has been tested. Furthermore, it is evaluated whether the chaotic noise is more effective than random noise in the process of the dynamical neural networks.

Rock Fracture Centerline Extraction based on Hessian Matrix and Steger algorithm

  • Wang, Weixing;Liang, Yanjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.5073-5086
    • /
    • 2015
  • The rock fracture detection by image analysis is significant for fracture measurement and assessment engineering. The paper proposes a novel image segmentation algorithm for the centerline tracing of a rock fracture based on Hessian Matrix at Multi-scales and Steger algorithm. A traditional fracture detection method, which does edge detection first, then makes image binarization, and finally performs noise removal and fracture gap linking, is difficult for images of rough rock surfaces. To overcome the problem, the new algorithm extracts the centerlines directly from a gray level image. It includes three steps: (1) Hessian Matrix and Frangi filter are adopted to enhance the curvilinear structures, then after image binarization, the spurious-fractures and noise are removed by synthesizing the area, circularity and rectangularity; (2) On the binary image, Steger algorithm is used to detect fracture centerline points, then the centerline points or segments are linked according to the gap distance and the angle differences; and (3) Based on the above centerline detection roughly, the centerline points are searched in the original image in a local window along the direction perpendicular to the normal of the centerline, then these points are linked. A number of rock fracture images have been tested, and the testing results show that compared to other traditional algorithms, the proposed algorithm can extract rock fracture centerlines accurately.

Novel Method for Face Recognition using Laplacian of Gaussian Mask with Local Contour Pattern

  • Jeon, Tae-jun;Jang, Kyeong-uk;Lee, Seung-ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5605-5623
    • /
    • 2016
  • We propose a face recognition method that utilizes the LCP face descriptor. The proposed method applies a LoG mask to extract a face contour response, and employs the LCP algorithm to produce a binary pattern representation that ensures high recognition performance even under the changes in illumination, noise, and aging. The proposed LCP algorithm produces excellent noise reduction and efficiency in removing unnecessary information from the face by extracting a face contour response using the LoG mask, whose behavior is similar to the human eye. Majority of reported algorithms search for face contour response information. On the other hand, our proposed LCP algorithm produces results expressing major facial information by applying the threshold to the search area with only 8 bits. However, the LCP algorithm produces results that express major facial information with only 8-bits by applying a threshold value to the search area. Therefore, compared to previous approaches, the LCP algorithm maintains a consistent accuracy under varying circumstances, and produces a high face recognition rate with a relatively small feature vector. The test results indicate that the LCP algorithm produces a higher facial recognition rate than the rate of human visual's recognition capability, and outperforms the existing methods.

The Development of a Marker Detection Algorithm for Improving a Lighting Environment and Occlusion Problem of an Augmented Reality (증강현실 시스템의 조명환경과 가림현상 문제를 개선한 마커 검출 알고리즘 개발)

  • Lee, Gyeong Ho;Kim, Young Seop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.79-83
    • /
    • 2012
  • We use adaptive method and determine threshold coefficient so that the algorithm could decide a suitable binarization threshold coefficient of the image to detecting a marker; therefore, we solve the light influence on the shadow area and dark region. In order to improve the speed for reducing computation we created Integral Image. The algorithm detects an outline of the image by using canny edge detection for getting damage or obscured markers as it receives the noise removed picture. The strength of the line of the outline is extracted by Hough transform and it extracts the candidate regions corresponding to the coordinates of the corners. Markers extracted using the equation of a straight edge to find the coordinates. By using the equation of straight the algorithm finds the coordinates the corners. of extracted markers. As a result, even if all corners are obscured, the algorithm can find all of them and this was proved through the experiment.

Improved Parameter Estimation with Threshold Adaptation of Cognitive Local Sensors

  • Seol, Dae-Young;Lim, Hyoung-Jin;Song, Moon-Gun;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.471-480
    • /
    • 2012
  • Reliable detection of primary user activity increases the opportunity to access temporarily unused bands and prevents harmful interference to the primary system. By extracting a global decision from local sensing results, cooperative sensing achieves high reliability against multipath fading. For the effective combining of sensing results, which is generalized by a likelihood ratio test, the fusion center should learn some parameters, such as the probabilities of primary transmission, false alarm, and detection at the local sensors. During the training period in supervised learning, the on/off log of primary transmission serves as the output label of decision statistics from the local sensor. In this paper, we extend unsupervised learning techniques with an expectation maximization algorithm for cooperative spectrum sensing, which does not require an external primary transmission log. Local sensors report binary hard decisions to the fusion center and adjust their operating points to enhance learning performance. Increasing the number of sensors, the joint-expectation step makes a confident classification on the primary transmission as in the supervised learning. Thereby, the proposed scheme provides accurate parameter estimates and a fast convergence rate even in low signal-to-noise ratio regimes, where the primary signal is dominated by the noise at the local sensors.

Modulation Recognition of BPSK/QPSK Signals based on Features in the Graph Domain

  • Yang, Li;Hu, Guobing;Xu, Xiaoyang;Zhao, Pinjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3761-3779
    • /
    • 2022
  • The performance of existing recognition algorithms for binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals degrade under conditions of low signal-to-noise ratios (SNR). Hence, a novel recognition algorithm based on features in the graph domain is proposed in this study. First, the power spectrum of the squared candidate signal is truncated by a rectangular window. Thereafter, the graph representation of the truncated spectrum is obtained via normalization, quantization, and edge construction. Based on the analysis of the connectivity difference of the graphs under different hypotheses, the sum of degree (SD) of the graphs is utilized as a discriminate feature to classify BPSK and QPSK signals. Moreover, we prove that the SD is a Schur-concave function with respect to the probability vector of the vertices (PVV). Extensive simulations confirm the effectiveness of the proposed algorithm, and its superiority to the listed model-driven-based (MDB) algorithms in terms of recognition performance under low SNRs and computational complexity. As it is confirmed that the proposed method reduces the computational complexity of existing graph-based algorithms, it can be applied in modulation recognition of radar or communication signals in real-time processing, and does not require any prior knowledge about the training sets, channel coefficients, or noise power.

Underwater Optical Image Data Transmission in the Presence of Turbulence and Attenuation

  • Ramavath Prasad Naik;Maaz Salman;Wan-Young Chung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • Underwater images carry information that is useful in the fields of aquaculture, underwater military security, navigation, transportation, and so on. In this research, we transmitted an underwater image through various underwater mediums in the presence of underwater turbulence and beam attenuation effects using a high-speed visible optical carrier signal. The optical beam undergoes scintillation because of the turbulence and attenuation effects; therefore, distorted images were observed at the receiver end. To understand the behavior of the communication media, we obtained the bit error rate (BER) performance of the system with respect to the average signal-to-noise ratio (SNR). Also, the structural similarity index (SSI) and peak SNR (PSNR) metrics of the received image were evaluated. Based on the received images, we employed suitable nonlinear filters to recover the distorted images and enhance them further. The BER, SSI, and PSNR metrics of the specific nonlinear filters were also evaluated and compared with the unfiltered metrics. These metrics were evaluated using the on-off keying and binary phase-shift keying modulation techniques for the 50-m and 100-m links for beam attenuation resulting from pure seawater, clear ocean water, and coastal ocean water mediums.

A Study on the Generation of Ultrasonic Binary Image for Image Segmentation (Image segmentation을 위한 초음파 이진 영상 생성에 관한 연구)

  • Choe, Heung-Ho;Yuk, In-Su
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.571-575
    • /
    • 1998
  • One of the most significant features of diagnostic ultrasonic instruments is to provide real time information of the soft tissues movements. Echocardiogram has been widely used for diagnosis of heart diseases since it is able to show real time images of heart valves and walls. However, the currently used ultrasonic images are deteriorated due to presence of speckle noises and image dropout. Therefore, it is very important to develop a new technique which can enhance ultrasonic images. In this study, a technique which extracts enhanced binary images in echocardiograms was proposed. For this purpose, a digital moving image file was made from analog echocardiogram, then it was stored as 8-bit gray-level for each frame. For an efficient image processing, the region containing the heat septum and tricuspid valve was selected as the region of interest(ROI). Image enhancement filters and morphology filters were used to reduce speckle noises in the images. The proposed procedure in this paper resulted in binary images with enhanced contour compared to those form the conventional threshold technique and original image processing technique which can be further implemented for the quantitative analysis of the left ventricular wall motion in echocardiogram by easy detection of the heart wall contours.

  • PDF

Arrhythmia Classification based on Binary Coding using QRS Feature Variability (QRS 특징점 변화에 따른 바이너리 코딩 기반의 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1947-1954
    • /
    • 2013
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person's individual difference. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose arrhythmia detection based on binary coding using QRS feature varibility. For this purpose, we detected R wave, RR interval, QRS width from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. PVC, PAC, Normal, BBB, Paced beat classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 97.18%, 94.14%, 99.83%, 92.77%, 97.48% in PVC, PAC, Normal, BBB, Paced beat classification.

Output Noise Reduction Technique Based on Frequency Hopping in a DC-DC Converter for BLE Applications

  • Park, Ju-Hyun;Kim, Sung Jin;Lee, Joo Young;Park, Sang Hyeon;Lee, Ju Ri;Kim, Sang Yun;Kim, Hong Jin;Lee, Kang-Yoon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.371-378
    • /
    • 2015
  • In this paper, a different type of pulse width modulation (PWM) control scheme for a buck converter is introduced. The proposed buck converter uses PWM with frequency hopping and a low quiescent.current low dropout (LDO) voltage regulator with a power supply rejection ratio enhancer to reduce high spurs, harmonics and output voltage ripples. The low quiescent.current LDO voltage regulator is not described in this paper. A three-bit binary-to-thermometer decoder scheme and voltage ripple controller (VRC) is implemented to achieve low voltage ripple less than 3mV to increase the efficiency of the buck converter. An internal clock that is synchronized to the internal switching frequency is used to set the hopping rate. A center frequency of 2.5MHz was chosen because of the bluetooth low energy (BLE) application. This proposed DC-DC buck converter is available for low-current noise-sensitive loads such as BLE and radio frequency loads in portable communications devices. Thus, a high-efficiency and low-voltage ripple is required. This results in a less than 2% drop in the regulator's efficiency, and a less than 3mV voltage ripple, with -26 dBm peak spur reduction operating in the buck converter.