• Title/Summary/Keyword: binary liquid mixtures

Search Result 68, Processing Time 0.022 seconds

The Prediction of Vapor-Liquid Equilibrium Data for Cyclohexanol-Cyclohexanone System at Subatmospheric Pressure (감압하에서 2성분 Cyclohexanol-Cyclohexanone계에 대한 기-액평형치의 추산)

  • Shim, Hong-Seub;Kim, Jong-Shik
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.677-681
    • /
    • 1999
  • For the binary cyclohexanol-cyclohexanone system the vapor-liquid equilibrium data, which are the necessary ones for the design of the distillation columns in separation process of volatile liquid-mixtures, are measured at subatmospheric pressure of 150, 300 and 500 mmHg. An empirical relation between logarithmic values of relative volatility(log $\alpha$) and liquid phase composition(x), which predicts the vapor-liquid equilibrium data, is obtained from above measured data of 150, 300 and 500 mmHg and the published ones of 30, 100, 200, 395 and 750 mmHg. The predicted data are compared with the measured and published ones to be in good agreement.

  • PDF

Pool Boiling Heat Transfer Coefficient of HFC32/HFC152a on a Plain Surface (평판 표면에서 HFC32/HFC152a 혼합냉매의 풀 비등 열전달계수)

  • Kang, Dong-Gyu;Lee, Yohan;Jung, Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.9
    • /
    • pp.484-492
    • /
    • 2013
  • Nucleate pool boiling heat transfer coefficients (HTCs) are measured with HFC32/HFC152a mixture at several compositions. All data are taken at the liquid pool temperature of $7^{\circ}C$, on a horizontal plain square surface of $9.53{\times}9.53$ mm, with heat fluxes of 10 $kW/m^2$ to 100 $kW/m^2$ with an interval of 10 $kW/m^2$, in the increasing order of heat flux. Test results show that the HTCs of these mixtures are up to 45% lower than those of the ideal HTCs calculated by a linear mixing rule with pure fluids' HTCs, due to the mass transfer resistance associated with non-azeotropic refrigerant mixtures. Pool boiling data show the deduction in HTCs with an increase in GTD of the mixture. The present mixture data agree well with five well known correlations, within 20% deviation.

A Study on the Solid-liquid Equilibria for Benzene+aniline, Benzene+nitrobenzene, p-xylene+cyclohexane (Benzene+aniline, benzene+nitrobenzene, p-xylene+cyclohexane계의 고액평형에 관한 연구)

  • Park, So-Jin;Paik, Seung-Kwan
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.864-869
    • /
    • 1998
  • In this work, the solid-liquid equilibria (SLE) of some aromatic organic mixtures including benzene, widely used as an industrial solvent, were measured by static method using our own made experimental apparatus. The accuracy and reproducibility of apparatus were tested by comparing experimental results with literature values for 1-dodecanol+cyclohxane and benzene + p-xylene systems. The SLE for new binary systems of benzene+aniline, benzene+nitrobenzene, p-xylene+cyclohexane were measured afterwards and compared with the calculated values by modified UNIFAC(Dortmund) equation.

  • PDF

Gliclazide compatibility with some common chemically reactive excipients; using different analytical techniques

  • Jabbari, Hamideh Najjarpour;Shabani, Mohammad;Monajjemzadeh, Farnaz
    • Analytical Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.46-55
    • /
    • 2021
  • Evaluation of drug-excipient compatibility is one of the basic steps in the preformulation of pharmaceutical dosage forms. Some reactive excipients have been known so far which may cause stability problems for drug molecules in pharmaceutical dosage forms. The aim of this study was to evaluate drugexcipient compatibility of gliclazide with some common pharmaceutical excipients, known for their ability to incorporate in drug-excipient interactions. Binary mixtures were prepared using lactose, magnesium stearate, polyvinylpyrrolidone, sodium starch glycolate, polyethylene glycol 2000 and dicalcium phosphate. Based on the results; gliclazide was incompatible with all tested excipients; but not with dicalcium phosphate. DSC (Differential Scanning Calorimetry) results were in accordance with HPLC (High Pressure liquid chromatography) data and were more predictive than FTIR (Fourier Transform Infrared Spectroscopy). Drug and reactive excipients incompatibility was fully discussed and documented. It is advisable to avoid incompatible excipients or carefully monitor the drug stability when incorporating such excipients in final formulation designs.

Measurement of Flash Point for Binary Mixtures of Toluene, Methylcyclohexane, n-heptane and Ethylbenzene at 101.3 kPa (Toluene, Methylcyclohexane, n-heptane 그리고 Ethylbenzene 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.19-24
    • /
    • 2017
  • Flammable substances are used in laboratories and industrial process. The flash point (FP) is one of the most important physical properties used to determine the potential for characterizing the fire and explosion hazard of liquids. The FP data at 101.3 kPa were measured for the binary systems {toluene+ethylbenzene}, {methlycyclohenxane+ethylbenzene} and {n-heptane+ ethylbenzene}. The experiments were performed according to the standard test method (ASTM D 3278) using a SETA closed cup flash point tester. The measured FPs were compared with the values predicted using the following activity coefficient models: Wilson, Non-Random Two Liquid (NRTL), and UNIversal QUAsiChemical (UNIQUAC). The average absolute deviation between the predicted and measured lower FP was less than 1.74 K.

Optimization Study for Pressure Swing Distillation Process for the Mixture of Isobutyl-Acetate and Isobutyl-Alcohol System (Isobutyl-Acetate와 Isobutyl-Alcohol 이성분계의 압력변환증류 공정 최적화 연구)

  • Cho, Sung Jin;Shin, Jae Sun;Choi, Suk Hoon;Lee, Euy Soo;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.307-313
    • /
    • 2014
  • In this study, an optimization process design has been performed to separate 99.9 mol% of Isobutyl Acetate from binary azeotropic mixture of Isobutyl Acetate and Isobutyl Alcohol system using a Pressure Swing Distillation (PSD). PSD is used to separate binary azeotropic mixtures using the difference between the relative volatilities and azeotropic compositions by changing the system pressure. Non-Random Two Liquid (NRTL) model for liquid phase and the Peng-Robinson equation for vapor phase are used. An optimization study for the reflux ratio and feed stage locations which minimize the total reboiler heat duties are studied. Since PSD process consists of two columns, i.e. high pressure and low pressure, the effect of column sequence on the optimum conditions is reported.

Pool Boiling Heat Transfer Coefficients of Mixtures Containing Propane, Isobutane and HFC134a on a Plain Tube (수평관에서 프로판, 이소부탄, BFC134a를 포함한 혼합냉매의 풀비등 열전달계수)

  • Park, Ki-Jung;Baek, In-Cheol;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.955-963
    • /
    • 2006
  • Nucleate pool boiling heat transfer coefficients (HTCs) were measured with one nonazeotropic mixture of Propane/Isobutane and two azeotropic mixtures of HFC134a/Isobutane and Propane/HFC134a. All data were taken at the liquid pool temperature of $7^{\circ}C$ on a horizontal plain tube with heat fluxes of $10kW/m^2\;to\;80kW/m^2$ with an interval of $10kW/m^2$ in the decreasing order of heat flux. The measurements were made through electrical heating by a cartridge heater. The nonazeotropic mixture of Propane/Isobutane showed a reduction of HTCs as much as 41% from the ideal values. The azeotropic mixtures of HFC134a/Isobutane and Propane/HFC134a showed a reduction of HTCs as much as 44% from the ideal values at compositions other than azeotropic compositions. At azeotropic compositions, however, the HTCs were even higher than the ideal values due to the increase in the vapor pressure. For all mixtures, the reduction in heat transfer was greater with a larger gliding temperature difference. Stephan and $K{\ddot{o}}rner's$ and Jung et al's correlations predicted the HTCs of mixtures with a mean deviation of 11%. The largest mean deviation occurred at the azeotropic compositions of HFC134a/Isobutane and Propane/HFC134a.

Experimental Study of the Phase Equilibria for $CO_2$ in Liquified Natural Gas Components at 77-219K

  • Yun, Sang-Kook
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.61-66
    • /
    • 2003
  • In order to prevent roll-over and a rapid boil-off of LNG in tanks, the phase equilibria of carbon dioxide in liquefied natural gas components as binary mixtures at cryogenic temperatures have been experimentally measured using Fourier transform infrared spectroscopy in conjunction with a specially designed variable pressure/temperature cryostat cell (pathlength 2 mm; pressures up to 30 bar). Solid carbon dioxide has been found to be comparatively soluble in liquid nitrogen (3.25$\times$${10}^{-6}$ mole fraction), liquid methane (1.04$\times$${10}^{-4}$ mole fraction), liquid ethane (3.1$\times$${10}^{-2}$ mole fraction) and liquid propane (6.11$\times$${10}^{-2}$ mole fraction) at their normal boiling temperatures. The solubilities of carbon dioxide in various cryogens, which increased with increasing temperature, are much lower than those obtained by others using gas chromatography. The differences are attributed to infrared spectroscopy selectively measuring dissolved solute in situ whereas gas chromatography measures microscopic particulate solid in addition to dissolved solute.

Thermodynamic Studies on the Structure of Binary Mixed Solvents(Ⅰ). Partial Molal Enthalpies of Alcohol-Cosolvent Mixtures (이성분 혼합용매의 구조에 대한 열역학적 연구(제1보). 알코올-Cosolvent 혼합물의 분몰랄엔탈피)

  • Nah, Sang Moo;Park, Young Dong
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.2
    • /
    • pp.63-68
    • /
    • 1997
  • Calorimetric measurements have been carried out for the binary mixture between protic, ROH (R=Me, Et) and dipolar aprotic solvents, MeCN,$Me_2CO,\;MeNO_2(or EtNO_2)$in order to investigate the molecular interaction and liquid structure of isodielectric solvents. From the measured partial molar enthalpies of the solutions, excess enthalpies for the mixing process were determined. The hydrogen bond strength between two components decreases in the order of$ROH-ROH>ROH-Me_2CO>ROH-MeCN>ROH-MeNO_2(or EtNO_2)$and the hydrogen bond donor acidity decreases in the order of MeOH>EtOH. From this result, we can conclude that the most important interaction for the formation of binary liquid mixture comes from the specific hydrogen bond.

  • PDF

Isothermal Vapor-Liquid Equilibria at 333.15K and Thermodynamic Excess Properties for the Binary System of Methanol+Dimethyl Carbonate (Methanol+Dimethyl Carbonate 혼합계의 333.15 K 등온 기-액 평형과 열역학 과잉 물성)

  • Han, Kyu-Jin;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.387-392
    • /
    • 2005
  • Recently, dimethyl carbonate (DMC) is considered as an alternative of MTBE (methyl tert-butyl ether), additive for non-leaded gasoline with their fast biodegradation rate and low toxicity. DMC is usually synthesized so far by oxidative carbonylation of methanol, and recently developed synthetic process is also started with methanol. Since the phase equilibria of the system, consisted of DMC and methanol or other reaction products on different temperature and pressure is necessary for the optimum separation process design and operation. However the reported phase equilibria and physical properties for DMC mixtures in the Dortmund Data Bank (DDB; thermodynamic property data bank) are quite rare. Besides, infinitely dilute properties are not found. In this work, isothermal vapor-liquid equilibria at 333.15 K for methanol+DMC binary system and mixing properties, excess molar volume and viscosity deviation at 298.15 K are directly measured and correlated. Additionally, infinitely dilute activity coefficient of methanol in the DMC solvent at three different temperatures are measured and compared with predicted values using modified UNIFAC (Dortmund).