• Title/Summary/Keyword: binary evolution

Search Result 107, Processing Time 0.025 seconds

Constraining the Mass Loss Geometry of Beta Lyrae

  • Lomax, Jamie R.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.1
    • /
    • pp.47-49
    • /
    • 2012
  • Massive binary stars lose mass by two mechanisms: jet-driven mass loss during periods of active mass transfer and by wind-driven mass loss. Beta Lyrae is an eclipsing, semi-detached binary whose state of active mass transfer provides a unique opportunity to study how the evolution of binary systems is affected by jet-driven mass loss. Roche lobe overflow from the primary star feeds the thick accretion disk which almost completely obscures the mass-gaining star. A hot spot predicted to be on the edge of the accretion disk may be the source of beta Lyrae's bipolar outflows. I present results from spectropolarimetric data taken with the University of Wisconsin's Half-Wave Spectropolarimeter and the Flower and Cook Observatory's photoelastic modulating polarimeter instrument which have implications for our current understanding of the system's disk geometry. Using broadband polarimetric analysis, I derive new information about the structure of the disk and the presence and location of a hot spot. These results place constraints on the geometrical distribution of material in beta Lyrae and can help quantify the amount of mass lost from massive interacting binary systems during phases of mass transfer and jet-driven mass loss.

A Real Code Genetic Algorithm for Optimum Design (실수형 Genetic-Algorithm에 의한 최적 설계)

  • 양영순;김기화
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.123-132
    • /
    • 1995
  • Genetic Algorithms(GA), which are based on the theory of natural evolution, have been evaluated highly for their robust performances. Traditional GA has mostly used binary code for representing design variable. The binary code GA has many difficulties to solve optimization problems with continuous design variables because of its large computer core memory size, inefficiency of its computing time, and its bad performance on local search. In this paper, a real code GA is proposed for dealing with the above problems. So, new crossover and mutation processes of GA are developed to use continuous design variables directly. The results of read code GA are compared with those of binary code GA for several single and multiple objective optimization problems. As a result of comparisons, it is found that the performance of the real code GA is better than that of the binary code GA, and concluded that the real code GA developed here can be used for the general optimization problem.

  • PDF

A PHOTOMETRIC STUDY OF THE CONTACT BINARY XZ LEONIS

  • Lee Jae-Woo;Lee Chung-Uk;Kim Chun-Hwey;Kang Young-Woon
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.41-50
    • /
    • 2006
  • We present the results of new multi-color CCD photometry for the contact binary XZ Leo, together with reasonable explanations for the period and light variations. Six new times of minimum light have been determined. A period study with all available timings confirms Qian's (2001) finding that the O-C residuals have varied secularly according to $dP/dt\;=\;+8.20{\times}10^{-8}\;d\;yr^{-l}$. This trend could be interpreted as a conservative mass transfer from the less massive cool secondary to the more massive hot primary in the system with a mass flow rate of about $5.37{\times}10^{-8}\;M_{\odot}\;yr^{-l}$. By simultaneous analysis of our light curves and the previously published radial-velocity data, a consistent set of light and velocity parameters for XZ Leo is obtained. The small differences between the observed and theoretical light curves are modelled by a blue third light and by a hot spot near the neck of the primary component. Our period study does not support the tertiary light but the hot region which may be formed by gas streams from the cool secondary. The solution indicates that XZ Leo is a deep contact binary with the values of q=0.343, $i=78^{\circ}.8$, ${\Delta}(T_1-T_2)=126\;K$, and f=33.6 %, differing much from those of Niarchos et al. (1994). Absolute parameters of XZ Leo are determined as follows: $M_1=1.84\;M_{\odot},\;M_2=0.63\;M_{\odot},\;R_1=1.75\;R_{\odot},\;R_2=1.10\;R_{\odot},\;L_1=7.19\;L_{\odot},\;and\;L_2=2.66\;L_{\odot}$.

Platinum Decoration of a 3D Oxidized Graphitic Carbon Nitride/Graphene Aerogel for Enhanced Visible-Light Photocatalytic Hydrogen Evolution

  • Thi Kieu Oanh Nguyen;Thanh Truong Dang;Tahereh Mahvelati-Shamsabadi;Jin Suk Chung
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.627-634
    • /
    • 2023
  • Graphitic carbon nitride (g-C3N4) has attracted considerable attention since its discovery for its catalysis of water splitting to hydrogen and oxygen under visible light irradiation. However, pristine g-C3N4 confers only low photocatalytic efficiency and requires surface cocatalysts to reach moderate activity due to a lack of accessible surface active sites. Inspired by the high specific surface area and superior electron transfer of graphene, we developed a strongly coupled binary structure of graphene and g-C3N4 aerogel with 3D porous skeleton. The as-prepared 3D structure photocatalysts achieve a high surface area that favors efficient photogenerated charge separation and transfer, enhances the light-harvesting efficiency, and significantly improves the photocatalytic hydrogen evolution rate as well. The photocatalyst performance is observed to be optimized at the ratio 3:7 (g-C3N4:GO), leading to photocatalytic H2 evolution of 16125.1 mmol. g-1. h-1 under visible light irradiation, more than 161 times higher than the rate achieved by bulk g-C3N4.

LOW MASS RATIO CONTACT BINARY SYSTEMS HN UMa AND II UMa - III (질량비가 작은 접촉쌍성 HN UMa와 II UMa - III)

  • Lee Woo-Baik;Kim Ho-Il;Kang Young-Woon;Oh Kyu-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.189-198
    • /
    • 2006
  • We present newly observed BVRI CCD light curves for low mass ratio contact binaries, HN UMa and II UMa. The absolute dimensions of these objects were obtained by applying the Wilson-Devinney program to previously published spectroscopic analysis and to our observed photometric data. The evolutionary status of all 21 low mass ratio contact binary system including HN UMa and II UMa was then considered. The secondaries of all low mass ratio contact binaries are located below the zero age main sequence in HR diagram. This phenomenon could be explained by mass loss from the secondary component in the low mass contact binary system because even small mass loss affects luminosity decrease in the low mass stars.

LIGHT CURVE ANALYSIS OF A SHORT PERIOD ECLIPSING BINARY SW LYNCIS (근접 식쌍성 SW LYNCIS의 광도곡선 분석)

  • 김호일;한원용;이우백;김천휘
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.196-203
    • /
    • 1995
  • The UBV light curves of a close eclipsing binary SW Lyn were obtained with the observations made at the Sobaeksan Astronomy Observatory during 7 nights from September 1983 to March 1987. These light curves show asymmetry to the secondary minimum light and the asymmetry is larger at the shorter wavelength light curve. Assuming that the star sport makes the asymmetry, we employed the WD code to make the B and V light curves solution. We confirmed that SW Lyu has near contact(semi-detached) Roche configuration and has the Case A evolution.

  • PDF

THE MASS AND ANGULAR MOMENTUM RELATION OF ECLIPSING BINARIES (식쌍성의 질량과 궤도 각운동량 관계)

  • Oh, Kyu-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.83-90
    • /
    • 1998
  • With a total 2780 eclipsing binary systems in the Catalogue of Approximate Photometric and Absolute Elements of Eclipsing Variable Stars by Svechnikov & Kuznetsova(1990), the empirical relations between the systemic mass and orbital argular momentum have been examined. It is found that, during the its evolution, the total orbital argular momentum of the eclipsing binary sustem is not conserved. It decreases gradually, though not at a constant rate, until the system becomes into contact from initially detached via semi-detached system.

  • PDF

Performance Comparison on Pattern Recognition Between DNA Coding Method and GA Coding Method (DNA 코딩방법과 GA 코딩방법의 패턴인식 성능 비교에 관한 연구)

  • 백동화;한승수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.383-386
    • /
    • 2002
  • In this paper, we investigated the pattern recognition performance of the numeric patterns (from 0 to 9) using DNA coding method. The pattern recognition performance of the DNA coding method is compared to the that of the GA(Genetic Algorithm). GA searches effectively an optimal solution via the artificial evolution of individual group of binary string using binary coding, while DNA coding method uses four-type bases denoted by A(Adenine), C(Cytosine), G(Guanine) and T(Thymine), The pattern recognition performance of GA and DNA coding method is evaluated by using the same genetic operators(crossover and mutation) and the crossover probability and mutation probability are set the same value to the both methods. The DNA coding method has better characteristics over genetic algorithms (GA). The reasons for this outstanding performance is multiple possible solution presentation in one string and variable solution string length.

THE CLASSIFICATION AND PHYSICS OF SUPERNOVAE

  • Wheeler, J. Craig
    • Publications of The Korean Astronomical Society
    • /
    • v.8 no.1
    • /
    • pp.169-177
    • /
    • 1993
  • Observed spectra of supernovae allow the empirical classification of supernovae into two basic categories, Type I with little or no evidence of hydrogen, and Type II with obvious evidence for hydrogen. The broad class of Type I can be subdivided depending on whether helium or silicon and other intermediate mass elements is observed. Understanding the physical processes that underlie these classifications---the progenitor evolution. the explosion mechanism, and end products---requires calculation of radiative transfer and model spectra. While most Type II occur in evolved massive stars that undergo core collapse. some may span the dividing line between degenerate and non-degenerate carbon burning and involve both core collapse and thermonuclear explosion. Type Ia are still most plausibly explained as thermonuclear explosions in carbon/oxygen white dwarfs in binary systems. Type Ib reveal helium atmospheres and are probably the result of core collapse in the helium core of a massive star that has lost its hydrogen envelope to a binary companion or to a wind. Type Ic supernovae are probably related to Type Ib but have also lost their helium envelope to reveal a mantle rich in oxygen.

  • PDF

A Numerical Analysis on the Binary Droplet Collision with the Level Set Method (Level Set 방법을 이용한 액적 충돌 현상에 대한 수치해석)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.559-564
    • /
    • 2008
  • A prediction of binary droplets collision is important in the formation of falling drops and the evolution of sprays. The droplet velocity, impact parameter and drop-size ratio have influence on the interaction of the droplets. By the effect of these parameter, the collision processes are generated with the complicated phenomena. The droplet collision can be classified into four interactions such as the bouncing, coalescence, reflexive separation and stretching separation. In this study, the two-phase flow of the droplet collision was simulated numerically by using the Level Set method. 2D axi-symmetric simulations on the head-on collisions in the coalescence and reflexive separation, and 3D simulation on the off-center collisions in the coalescence and stretching separation were performed. These numerical results showed good agreements with the experimental and analytical results. For tracking the identity of droplets after the collision, transport equation for the volume fraction of the each initial droplet were used. From this, the identities of droplets were analyzed on the collision of droplets having different size.

  • PDF