• Title/Summary/Keyword: binary code

Search Result 506, Processing Time 0.063 seconds

Design and Implementation of a Dynamic Instrumentation Framework based on Light-weight Dynamic Binary Translation (경량 동적 코드 변환 기법을 이용한 동적 인스트루멘테이션 기법 설계 및 구현)

  • Kim, Jeehong;Lee, Dongwoo;Kim, Inhyeok;Eom, Young Ik
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.892-899
    • /
    • 2014
  • Dynamic binary instrumentation is a code insertion technique for debugging a program without scattering its execution flow, while the program is running. Most dynamic instrumentations are implemented using dynamic binary translation techniques. Existing studies translated program codes dynamically by parsing the machine code stream to intermediate representation (IR) and then applying compilation techniques for IRs. However, they have high overhead during translation, which is a major cause of difficulty in applying the dynamic binary translation technique to the program which requires high responsiveness. In this paper, we introduce a light-weight dynamic binary instrumentation framework based on a novel dynamic binary translation technique which has low overhead while translating the program code. In order to reduce the translation overhead, our approach adopts a tabular-based address translation and exploits a translation bypassing scheme, which stores the translated address of a frequently called library function in advance. It then accesses the translated address and executes function codes without code translation when calling the function. Our experiment results demonstrated that the proposed approach outperforms the prior dynamic binary translation techniques from 2% up to 65%.

Cross-architecture Binary Function Similarity Detection based on Composite Feature Model

  • Xiaonan Li;Guimin Zhang;Qingbao Li;Ping Zhang;Zhifeng Chen;Jinjin Liu;Shudan Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2101-2123
    • /
    • 2023
  • Recent studies have shown that the neural network-based binary code similarity detection technology performs well in vulnerability mining, plagiarism detection, and malicious code analysis. However, existing cross-architecture methods still suffer from insufficient feature characterization and low discrimination accuracy. To address these issues, this paper proposes a cross-architecture binary function similarity detection method based on composite feature model (SDCFM). Firstly, the binary function is converted into vector representation according to the proposed composite feature model, which is composed of instruction statistical features, control flow graph structural features, and application program interface calling behavioral features. Then, the composite features are embedded by the proposed hierarchical embedding network based on a graph neural network. In which, the block-level features and the function-level features are processed separately and finally fused into the embedding. In addition, to make the trained model more accurate and stable, our method utilizes the embeddings of predecessor nodes to modify the node embedding in the iterative updating process of the graph neural network. To assess the effectiveness of composite feature model, we contrast SDCFM with the state of art method on benchmark datasets. The experimental results show that SDCFM has good performance both on the area under the curve in the binary function similarity detection task and the vulnerable candidate function ranking in vulnerability search task.

Encoding & Decoding of Radix 4 Polar Code (Radix 4 Polar code의 부호 및 복호)

  • Lee, Moon-Ho;Choi, Eun-Ji;Yang, Jae-Seung;Park, Ju-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.10
    • /
    • pp.14-27
    • /
    • 2009
  • Polar Code was proposed by Turkish professor Erdal Arikan in 2006 as an idea that splitted input channel is increasing the cutoff rate. The channel polarization consisted of code sequences with symmetric high rate capacity in a given B-DMC(Binary-input Discrete Memoryless Channel) W. The symmetric capacity is the highest rate achievable subject to using the input letters of the channel with equal probability. The channel polarization is said to a set of given N independent outputs of B-DMC W. In other word, N increases when N is a set of binary-input channels {$W^{(i)}_N\;:\;1{\leq}\;i\;{\leq}\;N$}, in I{WN(i)} as the fraction of indices is near to 1, which is approaching to I(W), and it is near to 0, then to 1-I(W), where I(W) presents high rates in reliable wireless communication channel as inputs of W with equal frequences. After all, {WN(i)} is shown to be a state of channel coding. On the based on this Polar codes, this paper analyzes Polar coding and decoding of Arikan and propose Radix4 Polar coding newly.

M/B-MC/CDMA performance analysis for high speed data transmission in IS-95 evolution (IS-95 진화방안에서 고속 데이터 전송을 위한 M/B-MC/CDMA 전송방식의 성능분석)

  • 임명섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10A
    • /
    • pp.1494-1500
    • /
    • 1999
  • In order to provide high speed multimedia data rate service, Multi-Code CDMA has been proposed which converts high speed serial data stream into N parallel low speed data streams with orthogonal PN codes for spreading. However this signal has multi level and causes interferences to be increased at the neighboring cell boundary in the reverse link. Therefore in order to solve the above mentioned problem, M/B-MC/CDMA, in which multi level signal is converted to binary level signal using M/B conversion, is proposed and the performance is compared with MC-CDMA.

  • PDF

Design and Development of a Novel High Resolution Absolute Rotary Encoder System Based on Affine n-digit N-ary Gray Code

  • Paul, Sarbajit;Chang, Junghwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.943-952
    • /
    • 2018
  • This paper presents a new type of absolute rotary encoder system based on the affine n-digit N-ary gray code. A brief comparison of the existing encoder systems is carried out in terms of resolution, encoding and decoding principles and number of sensor heads needed. Using the proposed method, two different types of encoder disks are designed, namely, color-coded disk and grayscale coded disk. The designed coded disk pattern is used to manufacture 3 digit 3 ary and 2 digit 5 ary grayscale coded disks respectively. The manufactured disk is used with the light emitter and photodetector assembly to design the entire encode system. Experimental analysis is done on the designed prototype with LabVIEW platform for data acquisition. A comparison of the designed system is done with the traditional binary gray code encoder system in terms of resolution, disk diameter, number of tracks and data acquisition system. The resolution of the manufactured system is 3 times higher than the conventional system. Also, for a 5 digit 5 ary coded encoder system, a resolution approximately 100 times better than the conventional binary system can be achieved. In general, the proposed encoder system gives $(N/2)^n$ times better resolution compared with the traditional gray coded disk. The miniaturization in diameter of the coded disk can be achieved compared to the conventional binary systems.

The Robust Derivative Code for Object Recognition

  • Wang, Hainan;Zhang, Baochang;Zheng, Hong;Cao, Yao;Guo, Zhenhua;Qian, Chengshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.272-287
    • /
    • 2017
  • This paper proposes new methods, named Derivative Code (DerivativeCode) and Derivative Code Pattern (DCP), for object recognition. The discriminative derivative code is used to capture the local relationship in the input image by concatenating binary results of the mathematical derivative value. Gabor based DerivativeCode is directly used to solve the palmprint recognition problem, which achieves a much better performance than the state-of-art results on the PolyU palmprint database. A new local pattern method, named Derivative Code Pattern (DCP), is further introduced to calculate the local pattern feature based on Dervativecode for object recognition. Similar to local binary pattern (LBP), DCP can be further combined with Gabor features and modeled by spatial histogram. To evaluate the performance of DCP and Gabor-DCP, we test them on the FERET and PolyU infrared face databases, and experimental results show that the proposed method achieves a better result than LBP and some state-of-the-arts.

A Design of Correlator with the PBS Architecture in Binary CDMA System (Binary CDMA 시스템에서 PBS 구조를 가지는 코릴레이터 설계)

  • Lee, Seon-Keun;Jeong, Woo-Yeol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.3
    • /
    • pp.177-182
    • /
    • 2008
  • Because output of multi-code CDMA system adapted high speed data transmission becoming multi-level system use linear amplifier in output stage and complex output signal. Therefore, Multi-Code CDMA system has shortcoming of high price, high complexity etc. Binary CDMA technology that allow fetters in existing CDMA technology to supplement this shortcoming proposed. In binary CDMA system When correlator process high speed data, bottle-neck phenomenon is happened on synchronization acquisition process, it is very important parameter. Because existent correlator must there be advantage that power consumption is small but flow addition of several stages to receive correlation's value, the processing speed has disadvantage because the operation amount is much. Therefore in this paper, proposed correlator has characteristic such as data is able to high speed processing, chip area is independent and power consumption is constant in structure in binary CDMA system.

  • PDF

Improving The Performance of Turbo Code by Optimizing QAM Constellation (QAM 변조방식의 성상도 최적화를 통한 이진 터보 부호의 성능 개선)

  • Lee, Keun-Hyung;Lee, Ji-Yeon;Kang, Dong-Hoon;Oh, Wang-Rok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.7
    • /
    • pp.39-44
    • /
    • 2009
  • It is well-known that the performance of turbo codes can be improved by allocating different energies per code symbol. In this paper, based on this observation, we propose a joint encoding and modulation scheme for quadrature amplitude modulated turbo code systems. In the proposed scheme, the amount of energy difference between the turbo coded symbols is optimized by optimizing the constellation of quadrature amplitude modulation (QAM). The proposed scheme offers better coding gain compared to the conventional combination of binary turbo code and QAM at the bit error rate of 10$^{-5}$. Also, the performance of binary turbo codes with the proposed QAM constellation for various code symbol mapping strategies are verified.