• 제목/요약/키워드: billet

검색결과 339건 처리시간 0.024초

온간 단조에서 윤활 분사 방법에 따른 마찰 상수값의 평가 (Evaluation of Friction Shear Factor By the Lubricating Methods in Warm Forging)

  • 정덕진;김동진;김병민
    • 소성∙가공
    • /
    • 제10권4호
    • /
    • pp.319-328
    • /
    • 2001
  • Quantitative evaluation of the tribological conditions at the tool-workpiece interface in metal forming is usually accomplished by the ring compression test. This paper describes an experimental investigation into friction factor under warm forming conditions according to the lubricants and the lubricating methods using the ring compression test. Four different lubricants, two water based graphite and two oil based graphite lubricants, and three different lubricating methods were applied in the experiments. Calibration curves with the friction shear factor were obtained using FEM analysis and verified by the experimental results. The influence of lubricant and lubricating methods on friction are discussed. In the ring compression test, the lower friction factor got to spray the oil based lubricant on die and billet in warm forging temperature.

  • PDF

금속레오로지 소재성형의 연구동향 및 대량생산을 위한 해결 방안 (Research Trends of Rheology Forming and Their Solutions to Mass Production)

  • 강충길
    • 소성∙가공
    • /
    • 제11권2호
    • /
    • pp.123-131
    • /
    • 2002
  • The rheology process is net shape manufaturing technology to high of automobile part and improve the mechanical properties. For the rheology forming process, Phase and globular microstructure are very important. The equipments to make a rheology alloys with slurry statement have been introduced. Therefore, the Problems to Produce a rheology alloyas with continuous process had also been investigated to make Production in industries. The validity of the introduced rheology Process is investigated by comparing the reported thixoforming results. Therefore, the many advantage of rheology process to be reduced the reheating Process and billet fabrication method has been expressed in terms of mass production, in the future.

편심압출굽힘가공법에 의한 사각형 단면을 가진 중공 튜브제품의 U형굽힘가공에 관한 연구 (A Study on the U-bending of Rectangular Hollow Tube by the Eccentric Extrusion and Bending Process)

  • 김진훈;진인태
    • 소성∙가공
    • /
    • 제7권5호
    • /
    • pp.496-504
    • /
    • 1998
  • The eccentric extrusion and bending process for the forming of the curved rectangular hollow tube is newly developed. Generally the bending process of hollow tube is the secondary process followed by the extrusion process of the hollow tube from the round billet. So many defects such as wrinkling and the difference of wall thickness can be happened during the secondary bending process. In order to avoid the defects the new process named as "the eccentric extrusion and bending process" is suggested and applied to the U-bending of rectangular hollow tube. In this paper the kinematically admissible velocity field between the dies surface and the internal plug boundary surface s developed for the curving velocity. By the using of this curving velocity field the curvature of extruded products can be calculated with the parameters such as eccentricity dies length friction constant aspect ratio.

  • PDF

IMPROVEMENT OF FLEXURAL STRENGTH OF BIODEGRADABLE POLYMERIC INTERNAL FIXATION DEVICE BY SOLID STATE EXTRUSION

  • Lim, Soo-Ho;Lim, Jung-Yul;Kim, Soo-Hyun
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The Korea-Japan Plastics Processing Joint Seminar
    • /
    • pp.23-26
    • /
    • 2003
  • Solid-state extrusion technique was employed for the improvement of mechanical properties of polylactic acid (PLLA) widely used as biodegradable internal fixation devices currently. Cylindrical billets were machined out from the vacuum compression-molded PLLA to have various diameters, and solid-state extrusion of the billets was performed at various drawing rates and at the extrusion temperature of $130^{\circ}C$. Throughout the whole processes the decrease in molecular weight was significantly suppressed to be about $10\%$. Flexural modulus and strength of PLLA increased up to 8.3 GPa and 221 MPa, respectively. Studies on the orientation and crystallinity of extruded PLLA could reveal the effects of billet morphology, draw ratio, and drawing rate on the flexural strengths of PLLA.

  • PDF

상계요소법에 의한 축대칭 압출의 최종공정에서의 파이핑 발생에 관한 연구 (A Study on the Piping Defect at The Final Stage of Axisymmetric Extrusion by Upper Bound Element Technique)

  • 최재찬;최인근
    • 소성∙가공
    • /
    • 제3권1호
    • /
    • pp.23-37
    • /
    • 1994
  • The upper bound element technique(UBET) is used to analyze the final stage of the axisymmetric forward extrusion. Kinematically admissible velocity field involving curved surface of velocity discontinuity is assumed. The required power to arise the piping defect is obtained and is compared with Aviture's solution a the same condition. Conditions for inception of the cavity and development of the pipe are predicted. The internal radius of the pipe and critical length of billet are also determined. Experiments are carried out for extrusion with lead specimens to investigate the piping phenomena. The theoretically predicted results showed reasonably good agreement with the experimental observation.

  • PDF

소결 금속 의 압출 에 관한 연구 (Extrusion of Sintered Porous Metal)

  • 오흥국;이정근
    • 대한기계학회논문집
    • /
    • 제8권1호
    • /
    • pp.57-64
    • /
    • 1984
  • Forward extrusion of sintered porous metal through conical converging die is analyzed using slab method on the basis of plasticity theory for porous metal. It is taken into consideration in the analysis that the material in the container is continuously recompressed on densified until the process reaches steady state. Extrusion pressure and distribution of relative density from the die inlet to the outlet are calculated under various process variables. The results are useful in finding initial relative density of the billet, reduction of area and cone angle of the die in order to get required final products. Experiments are done for porous copper and then compared with the computed results.

단조해머의 타격효율 결정 (Determination of Blow Efficiency of the Forging Hammer)

  • 이성호;조남춘;이종수
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1539-1544
    • /
    • 1995
  • Copper blow test to measure the forging capability of 35 ton counterblow hammer and upset of plasticine on the model hammer to investigate the change of the blow efficiency during the forging process have been performed together with finite element analyses of these experiments. The blow efficiency of the hammer has been found to be dependent on the friction and on the contact area between the die and the workpiece. The effects of the volume and the aspect ratio of the billet have not been found. Inferring from the experimental results and Schey's empirical formula on the forging load, we expect that the efficiency also varies with the flow stress of the workpiece material and with the shape complexity of the forging product.

3차원 유한요소해석을 이용한 스크롤 로터의 단조 금형 설계 (The Forging Die Design of Scroll Rotor by using the 3-D FEM Analysis)

  • 이영선;이정환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.111-115
    • /
    • 2001
  • The die design for hot forging was investigated for manufacturing precisely of scroll rotor made with Al-Si alloy. A scroll rotor is a non-symmetric 3-D shape part, having involute wraps. Disk-shaped billet of Al-Si alloy was extruded to wraps and boss simultaneously. Because the involute wraps is not axi-symmetric, the flow velocity and the stress of die is very much different at each portion. Moreover, the die in wraps portion is a cantilever beam and fractured. In this paper, the analysis of forming and die stress is investigated using the FEM tool, DEFORM-3D. The tensile strength of tool material is $250kg/mm^{2}$. From the analysis results, we can find the maximum principal stress of die is over the fracture strength and redesign the die. The prototype forged part is superior in net shaping and microstructure.

  • PDF

Process Design for the Hot Forging of Asymmetric Rail to Symmetric Rail

  • Cho, Hae-Yong;Kim, Yong-Yun;Lee, Ki-Joung;Lee, Sung-Ho;Oh, Byung-Ki;Nam, Gi-Jung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1559-1564
    • /
    • 2004
  • The process design of hot forging, asymmetric to symmetric rib-web shaped steel, which is used for the turnout of express rails has been studied. Owing to the great difference in shape between the initial billet and the final forged product, it is impossible to hot forge the rail in a single stage operation. The numerical simulation for hot forging of asymmetric shape to symmetric shape was carried out by using commercial FEM code, DEFORMTM-2D. For comparison with the simulation results, a experiment of flow analysis using plasticine was also carried out. The results of the flow experiment showed good agreement with those of the simulation.